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INTRODUCTION 

The  effects  which  solar  activity  has  on  the  various  layers of the   ear th ' s  
atmosphere,   particularly  the  ionosphere,   play  an  important  part   in our 
daily life. Some of these  effects,  to  name  only a few,  are variations  in 
radio-communication  conditions,  disastrous  interruptions of radio  com- 
munication,  geomagnetic  storms  and  disturbances,  changes  in  climatic 
conditions,  and  polar  auroras. We will  not  consider  these  subjects  in 
detail   here,   since  such a comprehensive  study is not  the  object of this 
book  and  since  the  interested  reader  can  f ind  the  relevant  information 
elsewhere.  It  should  be  noted,  however,  that as the  sun-earth  problem 
becomes  studied  more  and  more  the  number of these  related  questions 
must   increase.  

A normal  economic  life  for a country is impossible  without  advance 
knowledge of the  conditions  which  will  prevail  in  the  various  atmospheric 
levels  at  any  given  time.  However,  since  these  layers are affected by 
solar   act ivi ty ,   the   level  of this  activity  must  also  be  calculated  in  advance. 
This  is particularly  important  for  the  prediction of conditions  in  the  iono- 
sphere,   which is the  part  of the  atmosphere  affected  directly by solar   act iv-  
ity.  Consequently,  the  development of methods  for   forecast ing  solar   act iv-  
ity is of primary  importance  in  solving a number of problems  related  to  the 
national  economy. 

Obviously,  the  more  basic  knowledge w e  have  about  any  given  phenome- 
non,  the  simpler  i t  is to  predict  it .   In  this  respect,  however,  we  find  our- 
selves  in a very  complicated  position.  Astrophysical  and  radioastronomical 
observations of the  sun  enable u s  to  study  only  the  solar  surface  and  solar 
atmosphere.   Thus,   when  describing  the  internal  structure of the  sun, we 
must  rely  almost  exclusively on hypotheses.  Moreover,  since  knowledge 
concerning  the  internal  solar  structure  and  the  processes  occurring  in  the 
so la r   in te r ior  is not  available,  it  is impossible  to  explain  the  mechanism of 
solar  activity.  Although  some  progress  has  recently  been  made  in  this  di- 
rection, a general   theory,   based  to a large  extent  on  the  various  hypotheses, 
has   s t i l l  not been  formulated. 

Therefore,   given  the  present  state of knowledge of so la r   ac t iv i ty ,   so la r  
scient is ts   must   use   empir icostat is t ical   methods of prediction.  This  in  turn 
means  that   long series of s imilar   observat ions of the  var ious  solar   forma- 
tions  must  be  available.  Until  recently,  most  such  observations were 
classified  according  to  various  solar-activity  indexes  which  do  not  satisfy 
rigorous  physical  standards.  The  two  longest of these series are the  Zurich 
series of Wolf numbers,  or relative  spot  numbers  (starting  with 17491, and 
the  Greenwich series of sunspot-group areas (startingwith  1874).  In  actual 
practice,   these are the  only  two  indexes  that  can  be  used  to  predict  solar 
activity,  and s o  only  these  indexes  will  be  discussed  here. It should  be 
noted, by the  way,  that  comparisons  with  geophysical  indexes  have  shown 
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that ,   to a rough  approximation,  the Wolf numbers  mainly  characterize  the 
ultraviolet  [wave]  component of solar  radiation,  and  the  spot areas mainly 
determine  the  corpuscular  component. 

are therefore  often  called Wolf numbers.  They are usually  defined as 
Relative  sunspot  numbers were introduced by Wolf in  Zurich  in 1849 and 

W = k ( I O g + f ) ,  (1) 

where g is the  number of sunspot  groups  and f is the  total  number of spots 
in  all  the  groups.  The  coefficient k is determined  f rom a comparison of 
different  observation series. It  depends  on  the  visibility  conditions,  the 
apparatus  used,  and  the  method of observation, as well as on  such  subjective 
factors  as observer  fatigue,  the way in  which  the  sunspots are combined  into 
groups,  and  the  nucleus  count. 

is a fairly  subjective  one.  However,  while  taking  this  into  account,  the 
Zur ich   researchers   have   made   every   e f for t   to   conserve   the   Zur ich   sys tem 
of relative  sunspot  numbers.   To  this end  long-term  simultaneous  sunspot 
observations  have  been  organized by the  chief  observer  and  his  successor 
and  the  results of these  observations  compared.  It  should  be  mentioned 
that i n  Wolfer's  time  the  value of the  coefficient k was changed.  Instead 
of Wolf's  value of k=i, Wolfer  gave k=0.6.  The  coefficient w a s  subsequently 
kept  constant,  the  above  change  being  due  to  an  alteration  in  the  method  for 
counting  sunspot  nuclei. 

ensures  homogeneity of the Wolf numbers.  Various  doubts as to  this  have 
recently  been  expressed.  The  problem is that, as Slonim  has  pointed  out, 
the  coefficient k can  change  with  time  even  for  the same experienced  ob- 
server,  and  that  this  change  can  occur  in a most  unexpected  manner.  In 
order  to  analyze  the  homogeneity of a series of analogous  observations,  at 
least   three  such series a re   r equ i r ed .  A sunspot series in  addition  to  the 
Zurich  series  has  been  provided by the  Soviet   solar  service,   but  the  lat ter 
series only  covers a period of slightly  more  than 20  years .   The   Fre iburg  
s e r i e s  of Wolf numbers,  on  the  other  hand, is much  shorter .   Moreover ,  
it w a s  obtained by averaging  the  data of various  observatories  and  thus  dif- 
fers  essentially  from  the  Zurich and  Soviet  relative-sunspot series. 

Vitinskii 's  comparison of the  Zurich  and  Soviet series of Wolf numbers 
has  shown  that  either  one of t h e s e   s e r i e s   o r  both of them  are   not   s t r ic t ly  
homogeneous. A more  exact  decision  concerning  the  homogeneity of these 
series cannot  be  made  at  present,  since a sufficiently  long  third series is 
still  not  available.  Nevertheless,  the  above  factor is an  indication  that  con- 
versions  from  the  Soviet   system  to  the  Zurich  system  can  be  made  only  with 
great  caution.  This  point  deserves  special  attention,  since  most of the  cyclic 
regularities  which  are of significance  for  solar-activity  forecasting  have  been 
obtained  on  the  basis of the  data of the  Zurich  system,  which is considered 
as  the  international  system. 

a high  correlation  with  various  geophysical  indexes  (especially  ionospheric 
character is t ics) ,   i t  is very  important  that  this series be  continued. At the 
same  t ime,  it would  be  very  interesting  to  consider  certain  problems  which 
might  assist  an  evaluation of the  reliability of the  Zurich  numbers.  Some of 
these  problems are: criteria for  the  discrimination of sunspot  groups,  the 

All  these  features of Wolf numbers  indicate  that  this  solar-activity  index 

It  may  be  questioned  whether  the  ZJrich  system,  with  all  its  precautions, 

Since  the  Zurich series of Wolf numbers  covers  over 200 years  and  shows 
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effect of the  visibility  conditions  on  Wolf-number  determination,  and  the 
influence  which  the  limb  effect  has  on  these  determinations. 

by Gle issberg   e t  al. These  studies  have  shown  that  the  limb  effect  acts 
differently  on  groups  with  different  "populations"  (with  different  numbers 
of sunspots).  Consequently,  the  central  zone is the  most   re l iable   for   sun-  
spot  counting.  To  the  best of our knowledge,  no  adequate  studies of the 
effect of visibility  conditions  on  Wolf-number  determination  have  been 
made so far, and  such  studies  will  be  impossible  unless  the  atmospheric 
conditions  accompanying  sunspot  observations are recorded. 

It is clear from  the  preceding  discussion  that  daily Wolf numbers are 
not  very  significant.  However,  monthly  and  yearly  relative  sunspot  num- 
bers are quite  suitable  both  for  comparison  with  the  various  geophysical 
indexes  and  for  forecasting.  This is particularly  true  for  the  yearly  values.  
For  monthly Wolf numbers  the  instabil i ty of coefficient k may  produce  devia- 
tions of 20 to  25% in  either  direction. 

Table I of the  Appendix  lists  the  Zurich Wolf numbers  for  each  month 
f rom 1749  to  1961.  In  the  following,  these  data  will  be  referred  to  as  the 
observed  numbers,  since  they  have  been  obtained by a simple  averaging of 
the  values  observed  during a month or  during a year ,  as contrasted  with 
the  smoothed  values of the  relative  sunspot  numbers.  

The  last   problem  has  been  considered by several   authors ,   in   par t icular  

The Wolf numbers are generally  smoothed  according  to  the  formula 

This  formula is used  in  order  to  eliminate  the  effects of t e r r e s t r i a l   a tmos -  
pheric  conditions.  Some  authors,  such  as  Vsekhsvyatskii,  have  suggested 
that  an  annual  variation of the Wolf numbers  exists.  However,  this  proposi- 
tion  has  recently  been  questioned.  Nevertheless,  since  many  forecasting 
regularities  have  been  determined on the  basis of smoothed  relative  sunspot 
numbers,  w e  will  list  the  values of these  numbers  for  each  month  from 1749 
t o  1960  in Table I1 of the  Appendix. 

ing  the  ionosphere  to  try  to  avoid  solar  indexes  describing  the  ultraviolet  
radiation of the  sun  and  to  substitute  ionospheric  solar-activity  indexes  for 
them. Not only  does  this series cover a period of less than 20 years ,   but  
also  such  an  attempt  i tself   represents a kind of self-deception,  since  iono- 
spheric  indexes are also  influenced by the  various  effects  characterizing  the 
te r res t r ia l   a tmosphere ,  so that  one of the  most  essential  difficulties  has  not 
been  overcome. 

Finally,  let  us  mention  briefly  Kopeckg's  interpretation of the Wolf num- 
bers. This is of more  significance,   in  that   two new  indexes are introduced, 
namely  the  theoretical  frequency of occurrence of spot  groups f,, and  the 
average  theoretical   group  l ifetimeT,.   These  indexes  will  not  be  considered 
here  in  detail,   but it should  be  noted  that  they  were  obtained  from  the  Green- 
wich  data  using  the  spot  groups  appearing  in  the  central  zone  and  assuming 
uniform  distribution of groups  over  the  longitude.  Kopeck?  showed  that 
w--f,T,, and  that  the  first  factor f, exhibits  almost  perfect  11-year  period- 
icity,  while  the  second  factor To does  not.  Consequently,  it  follows  that  the 
Wolf numbers  reflect  two  different  processes,  which  appear  to  be  super- 
posed on one  another. 

The  definite  subjectivity of the Wolf numbers  led  some  researchers  study- 
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Before  going  on  to  the  second  fundamental  index of solar activity,  the 
sunspot-group area, it  should be noted  that  the Wolf numbers  are de ter -  
mined  only  for  the  visible  hemisphere of the  sun.  Therefore,  when these  
numbers  are used it is tacit ly  assumed  that   an  analogous  spot  pattern  ex- 
ists on the  unobservable  hemisphere as well. 

Recently,  attempts  have  been  made  to  obtain  what are known as global 
relative  sunspot  numbers.   Becker  and  Kiepenheuer  used  visibil i ty  func- 
tions  which  they  derived for various  types of spot  groups  in  order  to  plot  
the  curves  for  group  development,   and  they  read from these  curves   the 
spot  numbers  during  the  14-day  period when the  spots  were  invisible.  For 
groups  with  short   l ifetimes,   different  probabili ty  assumptions  had  to  be 
made.  Then,  when  the  daily  results  were  added  up,  they  obtained  global 
sunspot  numbers,   these  being  the  number of spots   on  the  ent i re  solar s u r -  
face.   However,   since  this  procedure  is   quite  difficult   and  since  the  global 
numbers  are purely  hypothetical  quantities,  therefore  they  have  not  been 
used  in  practice  up  to  the  present.  

The  spot-group  areas ,   which  wil l  now be  considered,  are a l so   de te r -  
mined  only  for  the  visible  hemisphere of the  sun.  This  index of solar ac- 
t ivity  was  f irst   suggested  by  Carrington  in  Greenwich  in  1874.  In  contrast  
to  the Wolf numbers,  which a re  determined  both  photographically  and  visu- 
ally,   the  spot areas are measured  only from photographs.  All  the areas 
measured  are r e fe r r ed   t o   t he   so l a r   cen te r .  

in  mill ionth  parts of the  vis ible   solar   hemisphere.   In   the  la t ter  case the  
curva ture  of the  solar sur face  is taken  into  consideration.  It  should  be 
noted  that  in  general  the area determined is that of umbra  plus  penumbra, 
and  this is the  index  which  has  become  the  most  popular  for  practical  ap- 
plications.  Occasionally,  however, a study of the  development of individual 
groups is based  on  the areas of the  spot  nuclei,  which are measured   a t  
Greenwich.  Finally,  the area of the  largest   spot  in a group, a quantity 
which is determined by the  s ta t ions of the  Soviet solar se rv ice ,   can   a l so   be  
used for this  purpose. 

The  spot area represents  a more objective  index  than  the Wolf numbers .  
However,   in  the  f irst   place,   the  spot areas apparently  reflect   the  other  com- 
ponent of solar radiation,  the  corpuscular  component,  while,  in  the  second 
place,   the  spot-area series i s  less than  one-half as long as the  spot-number 
series. Therefore,  with  due  allowance  to  the  advantages of this  index,  i ts  
forecast ing  value  is   much  lower.  

In  one  case,   however,   sunspot areas represent  indispensible  indexes,  
this  case being  when  the  asymmetry of sunspot-formation  activity  in  the 
northern  and  southern  hemispheres is studied.  This is t rue  because Wolf 
numbers  are found  separately  for  the  two  hemispheres  only  within  one 11 - 
year   cycle ,   whi le   spot  areas have  been  determined  continuously  [for  the 
two  hemispheres]   f rom 1874 to  the  present.   This  makes  i t   possible,   on 
the   bas i s  of cer ta in   features  of sunspot -a rea   asymmetry ,   to   a r r ive  at some 
interesting  forecasting  conclusions.  

We  have  already  mentioned  that  the  Greenwich series is the  longest  exist-  
ing series of sunspot-group areas. Sunspot areas a re  also determined by the 
Soviet solar service,   and  Vitinskii 's   compari , .on of the two series indicates 
that  they are homogeneous  and  that  thus  conversion from one series to   the  
other  does  not  involve  any  special  difficulty. 

The  spot areas are usually  given  in  millionth  parts of the   so la r   d i sk  or  
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r 
With all its advantages,   the  spot-area  system  has  two  essential   defects,  

and  these  also  apply  to  the Wolf numbers.  First, the areas are influenced 
by  the  visibility  conditions  and,  second,  they are influenced  by  the  limb ef- 
fect. Since  in  the case of spot  areas photographs are made,  thus a change 
in  photo  contrast  cannot  but  influence  the  accuracy of area measurements  
for individual  spots,  especially  in  the  penumbra. If t he   s i ze  of the  disk, 
which  depends  on  the  particular  instrument  used, is not  large  enough,  then 
under  poor  atmospheric  conditions  some of the   smal le r   spots   may  even   be  
lost. Sunspot areas near  the  solar  l imb  can  be  measured  only  with a high 
degree  of uncertainty, s o  that  when  determining  the  group areas in   this  re- 
gion  (in  millionths of the  solar   hemisphere) ,   where sec p is very  large,   the  
measurement   errors   may  be  qui te   considerable .  

Thus,   monthly  and  yearly  averages are preferred  to  the  daily  values of 
the  total   spot area for  the entire  disk.  In  the  following,  the  word  "total" 
will  not  actually  be  used,  but it will  be  the  total area which is implied.  In 
addition  to  the  sunspot areas for  the ent i re   solar   disk,   spot  areas for the 
northern  and  southern  hemispheres,  generally for one  rotation of the  sun, 
are also  introduced  occasionally. 

The re  is a definite  statistical  correlation  between  the Wolf numbers W 
and  the  sunspot areas S (the  correlation  coefficient is about +0.85). On  the 
average,  this  correlation  may  be  expressed as 

S = 16.7W. (3) 

Let  us now consider  briefly  some  other  solar-activity  indexes  which are 
closely  related  to  the  sunspot areas. In their   study of cer ta in   special  fea- 
tu re s  of spot-group  development  during  the  various  phases of the  11-year 
solar  cycle,  Eigenson  and  Mandrykina  used  the  average  maximum  area s, 
of  the  spot  groups as an  index.  This  index is closely  related  to  Kopeckjr's 
quantity To. It  should  be  noted,  however,  that  in  some  cases  the  determina- 
tion of S, for individual  spot  groups is very  unreliable,  and  this is particu- 
larly  true  when  the  maximum area is   a t ta ined  near   the  solar   l imb or in  the 
unobservable  hemisphere of the  sun.  Nevertheless,  this  uncertainty is not 
greater  than  that  for  the  index s, and  thus  there  is  no reason  why the  index 
S,should  be rejected.   The  index 3, the  average area of a sunspot  group, 
is also  sometimes  used  for  certain  comparisons with  geophysical  phenomena. 
Since s, and s have no particular  prognostic  value  (at  least, as far as the 
sun is concerned),  we w i l l  not discuss  these  indexes  further.  

At present,  numerous  solar  indexes  characterizing  various  phenomena 
in  the  different  layers of the  solar   a tmosphere are available.  Naturally, 
i t  would be  highly  desirable to use  these  indexes  to  develop  methods  for 
solar-activity  prediction,  However,  unfortunately,  the series of da ta   re -  
ferr ing  to   these  indexes are rather  short   and,  what is particularly  signifi-  
cant,   discontinuous.   Moreover,   there is also  serious  doubt as to   their  
homogeneity.  Because of these  factors   we are forced  to   disregard  this  
whole set of solar indexes,  and  only  to refer to them  occasionally  for  purely 
qualitative  evaluations of the  situation. 

must  be  conceded  that  at  present  we  actually  have  nothing better than em- 
piricostatist ical   methods of Wolf-number  prediction.  The  forecasting of 
sunspot areas is mostly  confined  just  to  qualitative  estimates.  Moreover, 
this  si tuation  also  determines who can  der ive  the  main  benefi t   f rom  solar  

In   summarizing all the  preceding  discussion of solar-activity  indexes, it 
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forecasts .  Now such   forecas ts  are mainly  used by radiophysicists.  Mete- 
orologists  and  oceanologists, on the  other  hand,  use  Wolf-number  fore- 
casts only  for  certain  quali tative  estimates.   This book  will  discuss  these 
empiricostatist ical   methods  for  forecasting  solar  activity,   especially  meth- 
ods  for  forecasting  the Wolf numbers .  

range, 2)  long-range,  and 3)  ultralong-range. 

indexes  several   days  in   advance  (a   per iod  less   than  one  solar   rotat ion) .  
This   represents   the  most   complicated  problem,  and s o  far no satisfactory 
methods  for  short-range  forecasting  have  been  developed.  Therefore, we  
are res t r ic ted   to  a discussion of long-range-forecasting  methods  only 
(including  long-range  and  ultralong-range  forecasts, as defined  below).  It 
should  be  noted  that  the  division  into  long-range  and  ultralong-range  fore- 
ca s t s  is r a the r   a rb i t r a ry ,  and  that  it w a s  introduced  due  to  differences  in 
the  respective  methods  as  they  stand  at   present.  

Long-range  forecasts of solar   act ivi ty   include  a l l   forecasts   referr ing 
to  the  time  included  in  one  cycle.  It is convenient  to  divide  this  group  into 
two  subgroups,  namely  medium-period  and  long-period  forecasts.  Medium- 
period  forecasts  include  monthly  and  quarterly  forecasts.  This  subgroup 
has  begun  to  be  developed  only  during  recent  years;  it is not  distinguished 
by any  variety  in  methods,  and  the  accuracy of medium-period  forecasts 
is correspondingly  low.  The  main  difficulty  in  developing  medium-period 
fo recas t s  is that  here  fluctuational  processes  are  involved.  Although  some 
methods  have  been  worked  out  for  predicting  the  evolution of a fluctuation, 
s t i l l   i t  is virtually  impossible  at   present  to  foresee  the  appearance of a 
fluctuation.  Consequently,  at  times  when  powerful  fluctuations  arise,  such 
forecasts  have  especially  high  errors.  

The  second  subgroup of long-range  forecasts of solar  activity  includes 
forecasts   made a year   or   several   years   in   advance.   Some  progress   has  
been made with  respect  to  such  predictlons,  particularly  once  the  so-called 
"superposition  hypothesis"  was  refuted, a s t ep  which  stimulated  the  detailed 
study of in t racyc le   regular i t ies .   Forecas ts   made  a y e a r   o r   s e v e r a l   y e a r s  in 
advance now have a fairly  high  accuracy.  The  fact   that   several   different 
methods  for  making  such  forecasts  have  been  developed is a considerable  ad- 
vantage,  since  the  defects of the  various  methods  appear  to  compensate  for 
one  another. 

Ultralong-range  forecasts  predict   the  si tuation  over  the  next  11-year 
solar   cycle   or   over   several   future   cycles .   Such  forecasts   have  a lways  a t -  
tracted  the  attention of so la r   sc ien t i s t s ,  but  have  on  the  whole  resulted 
more  often  in  failures  than in successes .   The   reason   for   th i s  is that  regular 
telescopic  observations of the  sun  have  been  made  for  only a l i t t le  more  than 
200 y e a r s ,  so  that  many  higher-order  cyclic  regularit ies  have  probably re- 
mained  unknown  to us .  The  difficulty is increased  s t i l l   more by the  fact  that 
solar  activity is not  strictly  periodic,  since  it  is affected by a multiplicity of 
perturbarions.  Nevertheless,  some  success  has  been  achieved  in  this  sphere 
during  the  last   decade. 

In  this  book  the  above  classification of solar-activity  forecasts  has  been 
adhered  to,  and  the  text  has  been  divided as follows.  Chapter I discusses  
the  principal  regularities of solar  activity,  which  will  be  made  use of di-  
rectly  in  the  subsequent  discussion.  Chapter I1 deals with  long-range  fore- 
ca s t s   made  a year   o r   severa l   years   in   advance .   Chapter  III discusses  

Solar-activity  forecasts  can  be  divided  into  three  groups: 1) short-  

Short-range  forecasts  have as their  goal  the  calculation of cer ta in   so la r  
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medium-period  long-range  forecasts.   Finally,   Chapters IV and V deal 
with  methods of ultralong-range  forecasting. 

Naturally,  this  book  cannot  pretend  to  be  an  exhaustive  presentation 
of all  existing  methods of solar-activity  forecasting. An attempt  has  been 
made  to  select  only  the  most  important of these  methods,  on the  assump- 
tion  that  this  information w i l l  be  useful  to  heliophysicists.  geophysicists, 
and  also  to  any  others  interested  in  sun-earth  problems. 

ward  developing a theoretical  method  for  forecasting  the  solar  indexes. 
In particular,  Rubashev  has  made  a  contribution  which is of unquestion- 
able  interest   in  this  respect.   Let us hope  that  in  the  near  future  these 
studies w i l l  yield  tangible  results  and  that  solar-activity  forecasts  will 
be  placed on a  f irm  physical   basis.  

Finally, let us note  too  that   some  progress  has  recently  been  made  to- 
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Chapter I 

THE BASIC REGULARITIES OF SOLAR  CYCLES 

§ 1. General   Remarks 

Solar  activity  has  attracted  the  attention of many  investigators  from 
ancient  times  until  the  present.  The  first  observations  were  fragmentary 
and  made  with  the  naked  eye,  but later, f rom  the  t ime (16 10) when  Galileo 
used  the  telescope  for  solar  observations,   the  studies  became  more  and 
more  regular.  However,  almost 150 years   s t i l l   had  to   pass   before   the first 
important regularities of solar   act ivi ty   were  der ived  f rcm  these  observa-  
tions. 

ous indexes  connected  with  sunspots,  this  chapter  will  be  devoted to a d is -  
cussion of the  principal  regularities  in  sunspot  activity.  Many  other  active 
solar formations,   such as faculae,   chromospheric  f lares,   f i laments,   promi- 
nences,  regions of increased  coronal-l ine  emission,  and  radiospots,   are all 
mutually  related,  and  they  appear  to  constitute  one  single  complex of s o l a r  
activity.  The U and BM magnetic  regions  can also be  included  in  this 
complex. 

If the  magnetic  regions are disregarded,  sunspots  consti tute  the  cores 
of the  so-called  active  regions, or act ive  centers ,  of the  sun.  It is the 
presence of active  solar  regions  which  determines  the  actual  level of s o l a r  
activity.  We  will  consider  sunspot  activity  from  two  aspects,  temporal  and 
spatial.  The  temporal  behavior of sunspots is particularly  significant  for 
our  purposes.  Spatial  considerations  can  also  be  employed  in  some  fore- 
casting  procedures,   and  at   any  rate  these are closely  related  to  the  tempo- 
ral behavior of sunspots.  In  the  following,  therefore,  the  term  "solar 
activity"  will refer to sunspot  activity  only. 

Since  in  the  following  the  main  emphasis  will  be  on  forecasts of the  v a r i -  

2 .  The  Schwabe-Wolf  Law 

The  very  f irst   regular  observations of sunspots  showed  that  the  number 
of spots  varies  with time. This  was first observed by the  Danish  astro- 
nomer  Horrebow  in  the 1770's, on the  basis  of his  solar  observations  be- 
tween 1761 and 1769. Unfortunately,  most of Horrebow's  data  were lost  
in  the  shelling of Copenhagen  during  the  Napoleonic  wars,  and  his  dis- 
coveries  were  forgotten.   This  fact   became known  only after Wolf had 
stated  his  law  describing  the  variation of the  sunspot  numbers  (Gleissberg, 
1952). 
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In 1843, on the basis of 20  y e a r s  of observations,   the  amateur  astro- 
nomer  Schwabe  established  that   solar  activity  varies  with a period of about 
10  years  (Schwabe,  1844).  This  led  Rudolph  Wolf,  the  director of the  Zurich 
Observatory,   to  set   up  systematic  observations of the  variations  in  sunspot 
activity.  These  observations  then  led to the  discovery of the 11-year  sun- 
spot  cycle.  

Wolf showed  that  the  numbers of sunspots, o r  more  precisely  the Wolf 
numbers,  are subject  to  cyclic  fluctuations,  with  an  average  cycle  duration 
of 11.1  years .   This   very  important   regular i ty   in   solar   act ivi ty  is generally 
called  the  Schwabe-Wolf  law. It should  be  noted  that  this  law is val id   for  
other  active  solar  formations as well.  It  has  been  found  that  the  length of 
the  sunspot  cycle  changes  rather  sharply  from  one  cycle  to  another,   and 
that  i t   can  vary  from 7.3 to  17.1 yea r s .  

The  par t  of the  cycle  in  which  the  sunspot  number  goes  through a mini- 
m u m  is called  the  epoch of sunspot  minimum,  while  the  part  including  the 
maximum is called  the  epoch of sunspot  maximum. An increase   in   so la r  
activity is represented by a r is ing  curve and a decrease  is   represented by 
a descending  curve. 

regularly  determined in  Zurich  since  1749.  However,  even  the  scanty  ob- 
servat ions  made  f rom 1610  to  1749 were  sufficient  to  establish  epochs of 
maxima  and  minima  for  the  sunspot  cycle.   Later,   these  epochs  were  de- 
termined  according  to  the  variatlon of the  smoothed  monthly Wolf numbers.  

A s  mentioned  in  the  Introduction,  the  relative  sunspot  numbers  have  been 

TABLE 1 

Epochs of e x t r e m a  for 11-year runspot cycle  (Zurich  data) 

1610.6 
1619.0 
1634.0 
1645.0 
1655.0 
1666.0 
1679.5 
1689.5 

~- 

Epochs of minima 

1878.2 
1889.6 
1901.1 
1913.6 
1923.6 
1933.8 
1944.5 
1954.5 

1615.5 
1626.0 
1639.7 
1649.0 
1660.0 
1675.0 
1685.0 
1693.0 

Epochs of maxima ~- 
1705.5 
1718.2 
1721.5 
1738.7 
1750.3 
1761.5 
1769.1 
1778.4 

1805.2 1894.1 
1816.4  1907.0 
1829.9 1917.6 
1837.2 
1848.1 

192Y .4 
1937.4 

1860.1 1947.5 
1870.6 1957.9 

Table 1 shows  the  epochs of maxima  and  minima of the  11  -year  sunspot 
cycles,  compiled on  the  basis of the  Zurich  data  for  the  years  from  1610 
to  1957. 

The  epochs of extrema  for  the  11-year  sunspot  cycle  given  in  Table 1 
were determined  to  the  nearest   tenth of a year.   These  data  have  been  used 
t o  der ive   var ious   forecas t ing   re la t ions ,   and   thus   they   a re   g iven   here  in their  
original  form.  It  should be noted,  however,  that  cyclic  curves  plotted  from 
the  monthly  observed Wolf numbers are subject  to  strong  f luctuations,   and, 
as shown by Vitinskii,  the  length of these  f luctuations  ranges  from 3 months 
to a year .   Therefore ,   even  the  Zurich  as t ronomers  were forced  in some 
cases t o  introduce  corrections  into  the  epoch  values  obtained  from  the 
smoothed  monthly Wolf numbers.  Chernosky  has  recently  (1954)  shown 
that  smoothing  over a 5-month  period  gives  much  more  satisfactory  results 
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than  smoothing  according  to  formula (2) in  the  Introduction. It is interest-  
ing,  in  this  respect,  that 5 months is also the  average  duration of the  fluctu- 
ations  in  the  relative  sunspot  numbers.  

Taking all these  factors  into  account,   Vitinskii   and  Ikhsanov (1960) sug-  
gested  determining  the  epochs of extrema  for   the  11-year   cycle  to the   near -  
e s t  3 months,  which is the  minimum  duration of a fluctuation,  according to 
the  observed  quarter ly  Wolf numbers  (listed  in  Table I11 of the  Appendix). 
Two  curves  enveloping  the  peaks of the  positive  and  negative  fluctuations 
were   used  for this.  If both  curves  go  through a maximum,  then  this  point 
corresponds  to  a maximum of the  11-year  cycle,   and  the  epoch of minimum 
is determined  analogously. If a t  a given  point  the  curves  have  opposite 
shapes,   then the point  represents  only a strong  fluctuation.  Table 2 l i s t s  
the epochs of extrema  obtained  using  this  method.  The Roman numerals  

T A B L E  2 

Epochs of extrema for 11-year sunspot cycle  (according to Virinskii and Ikhsanov) 

11- 1755 
111- 1766 
I l l -  1775 
11- 1784 
11- 1798 

Epochs of !minima 

I V -  1804 111- 1859 111- 1Y17 

in  Table 2 indicate   the  quarters  of the  year.   Epochs of extrema  have  been 
given  only for thos? 11 -year   solar   cycles  for which  the Wolf numbers  have 
been  determined. 

epoch of minimum  for  the  1st   cycle  occurred  in  1755. Wolf numbers  for 
more  than  18  cycles are now available,  and  Figure 1 shows  the  curve of 
variation  in  yearly  relative  sunspot  numbers  for  the 18 complete  cycles  and 
for   the  e lapsed  par t  of the  19th  cycle.  The  curve  shows  that  different  11- 
y e a r  solar cyc les  are characterized not  only by different  durations  but  also 
by  different  intensities, as determined by the  maximum Wolf numbers.  

The  re la t ion  between  the  main  parameters   descr ibing  the  11-year   sun-  
spot  cycle  was  studied  in  detail   by  Waldmeier  (1935),   durlng  the  develop- 
ment  of his  widely  known  "eruption"  hypothesis of solar cyclicity, a theory 
which  will now be  discussed at some length. 

tion in years of the  r is ing  branch of the  curve  for   the l l -year  cycle,  and 
let 8 denote  the  duration of the  descending  branch,   f rom  the  epoch of maxi-  
mum  to   t he   yea r   i n   wh ich  W =  7.5; in  addition,  let W, denote  the Wolf num- 
b e r  5 years   a f te r   the   maximum of sunspot  activity.  Finally,  let X I  be  the 
s u m  of the  smoothed  monthly  relative  sunspot  numbers  over  the  ascending 
branch,  let 2, be   t he   sum of these  numbers  over  the  descending  branch,  and 
let WM be  the  maximum  monthly Wolf number.  According  to  Waldmeier,  we 
can  now single  out  the  following  basic  features of the  sunspot   curve.  

a. The  durat ion  Tof   the  ascending  branch  increases   with a decrease   in  
the  height WH of the  maximum. For even  cycles  (according  to  the  Zurich 
enumeration),  this  property  can  be  expressed  by  the  following  relation: 

According  to  the  Zurich  enumeration for the  11-year  sunspot  cycles,   the 

Le t  us  first  introduce  some  additional  notation. Let Tdenote  the  dura- 
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10gWI=2.69-O0.17T. 
f 0.09 f 0.02 

F o r  odd cycles,  we  have  the  relation 

(1.1) 

log wH=2.4a -0.10~. 
f 0.10 f 0.02 

(1.2) 

b. The  quantity 0 increases  with W'H: 

e = 3.0 + o . o w m  
f 0.6 f 0.006 

(1.3) 

c.   For  an  epoch 5 years  after  the  sunspot  maximum, w e  have  the  relation 
w, = -1 1.4 + 0.2sWp 

f 6.7 f 0.08 
(1.4) 

d. The  statistical  relations  between  the sums X, and  2,and  the  maximum 
Wolf number W, have  the  form 

= 0.4WH+ 2538, 
f 3.2 f 340 

2 = -572 + 40.6Ww 
i-600 f 5.9 

e. Finally,  it   follows  from  formulas  (l.l),  (1.2), and  (1.3)  that  the  ratio 
Q=T/e for  the  even  cycles is 

15.64 - 5.81 log W H  
3.0 +0.030WH ' 

while  for  the odd cycles it is 
24.8 - 10.00 log r9, 

Q= 3.0+O.030Wm . 

(1.7) 

(1.8) 

The  values of Qfor  different  cycles  range  from 0.37 to 1.72,  with  an 
average of 0.7. The  r ise  of the  cyclic  curve is more  rapid  than  the  des- 
cent  only  for  cycles  with  average  and high maximum  relative  sunspot  num- 
bers.   For  cycles  with low WM the  reverse  seems  to  be  true.  

The  above  relations  make  it  evident  that  the  behavior of the  cyclic  sun- 
spot  curve is determined  mainly by the  parameter WM. Consequently,  the 
time  variation  in  sunspot  activity F(t) has  the  form 

Stewart  and  Panofsky  (1938)  used  Waldmeier's  assumption  that  each 
cycle  can  be  considered  as  an  individual  eruption  as  the  basis  for  an  em- 
pir ical   formula  for  F(%). They  demonstrated  that  the  variation of the  cyclic 
curve of relative  sunspot  numbers is approximated  quite  well  by  the  ex- 
pression 

W=FP+', (1.10) 

where 8 is the  time  interval  in  years  between  the  given  instant  and  the  epoch 
of minimum,  while a, b, and F a r e  constant  for a given  solar  cycle.  The 
quantity F essentially  represents  the  scale of the  Wolf-number  time  base. 

In  deriving  formula ( l . l O ) ,  Stewart  and  Panofsky  used  the  Zurich  data 
for  the  epochs of minima  and  maxima,  for  the  maximum  smoothed  monthly 
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Wolf numbers,   and  for  the  yearly  observed Wolf numbers,   over 16 sun- 
spot  cycles.  The  constants ta, b, and Fwere determined by different  meth- 
ods  and  were found to  vary  both  according  to  the  method  used  and  accord- 
ing  to  the  cycle  considered.  It  will not be  necessary  to   discuss   here   the 
methods  employed; it will  be  enough  just  to  give  the  table  for  the  values of 
a, b, and  log F compiled  by  these  authors.  Let  us  note  that  in  some  cases a 
and b are not given,  since  the  figures  obtained  were  meaningless. 

T A B L E  3 

Main  parameters of Stewart-Panofsky  formula,  for  16  solar  cycles 
~~ 

Cycle 
number 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10  
11 
12 
1 3  
14  
1 5  
16  

__- 

1st  method 

a b 

10.43  1.51 
3.44 
3.99 

1.03 

0.68 2.41 
1.32 

11.66  1.53 
10.80 1.71 
11.22 1.55 

3.97 1.15 
5.63 1.14 
3.97  0.91 
4.29  1.20 
7.07 1.31 
5.38 1.12 
4.88 0.9'7 
6.54 1.54 
6.20 1.20 

. ~ ~ ~ 

-~ 

~ 

_______ 

7.89 
3.75 
5.95 
3.35 
6.21 

12.30 
7.55 
4.86 
7.13 
4.88 
5.73 
4.62 
4.95 
4.14 
7.04 
3.92 
" 

Table  3  (2nd  method)  indica 
well   in  terms of a as  follows: 

2nd method I 3rd method 

.te 

b 

1.32 
1.07 
1.60 
0.79 
1.12 
1.83 
1.28 
1.27 
1.28 
1.01 
1.38 
1.07 
1.08 
0.89 
1.60 
0.96 

log F 

-0.763 
+1.650 2.71 
+1.390 

+1.447 
-0.682 

3.74 -3.147 
-0.233 

1.32 +1.500 
1.20 

2.13 

+ 0.772 2.10 
+ 1.095 1.61 
+ 0.944 
+ 0.823 8.10 
+ 0.839 10.48 
+ 0.550 4.36 
+ 1.198 

-0.103 2.06 

- 
b - 

0.92 
0.76 
0.51 

1.02 

0.85 
0.71 
0.68 
0.76 

1.37 
1.41 
1.27 

~ 

4th  and  5th  methods 

3.08 
2.30 
1 .82 

6.44 

2.94 
3.49 
2.96 
2.71 

6.58 
7.09 
5.38 

b 

0.92 
0.76 
0.51 

1.02 

0.85 
0.71 
0.68 
0.76 

1.37 
1.41 
1.27 

s that b and  logP  can  be  expressed  quite 

b = 1.60 logo + 0.03, 
1ogF = "0.5370 + 3.63. 

(1.11) 

(1.12) 

Later   authors  who  have  attempted  to  find  an  analytical  form  for  the 
cyclic  curve  have  mostly  used  expressions  such as (1.10). In  particular,  
Gleissberg  (1951a)  gives  an  average  curve of this  type,  with a= 7.1832 
and b=  1.2013. Further  investigations,  however,  caused  Gleissberg  to 
divide all the  solar   cycles   into  three  groups,   in   terms of intensity,  and 
then  to  determine  constants a and b separately  for  each of these  groups. 

spot  activity.  In  this  model  he  showed  that  the  cyclic  curve  can  be  rep- 
resented  quite  accurately by the  formula 

Granger  recently (1957)  devised  a  statistical  model  describing  sun- 

w = f (z) re (2) + 4. (1.13) 
where f (2) is an  amplitude  factor  which  probably  contains a long-period 
fluctuation,  and g(z) is a  curve  which  may  be  approximated  roughly by the 
equation 

g = ~ 0 7 , + 7 3 - 0 . 0 ,  (1.14) 
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repeated  for  different  intervals.   The term c, is a random  function  which 
is on  the  average  zero.   Here,   equat ion (1.14) r ep resen t s  a modification of 
formula ( 1.10). 

If we  take  into  account  that  in  the  Stewart-Panofsky  formula  the  quantity 
Pis the scale of the time base   for   the  Wolf number,   then  we  have  here a two- 
parameter   formula.   Since a and b are not  independent of one  another,   some 
authors  have  tried  to  replace  this  relation by a one-parameter   formula  (see,  
for  example,  Thilring,  1955).  However,  there are many  properties of s o l a r  
cyclicity  which  do  not  back  up  this,  at  first  glance s o  attractive,   simplifica- 
tion.  The  problem is that  the  processes  corresponding  to  the  r ising  part  of 
the  solar-cycle  curve  differ  somewhat  markedly  from  the  processes  corres- 
ponding  to  the  descending  part of the  curve.   This  is i l lustrated by the  fact 
that   the  correlations  established  for  the  r ising  part  of the  curve are much 
better  than  those  for  the  descending  part.  In  the  subsequent  discussion  some 
other   features  of sunspot  activity  will  be  considered  which  support  this 
statement.  

The  studies of Xanthakis  (1959)  have  shown  that  some of the  properties of 
the  sunspot  cycle  depend  on  the  length of the   r i s ing   par t  of the  curve.   I t  is 
apparently  precisely  this  parameter  that   characterizes  the  shape of the  cycle 
curve,  the  maximum  height,  the  fluctuation  pattern,  etc.  The  descending 
pa r t  of the  curve,  on  the  other  hand, seems to  correspond  to a process  which 
depends  on  the  propert.ies of the  higher   layers  of the  subphotosphere. 

"leissberg (1949) tried  to  give a physical  explanation of the  Stewart& 
Panofsky  formula.  He  concluded  that  the  rate of formation of new spots  and 
the   ra te  of decay of existing  spots are both  proportional  to  the  intensity of 
solar  activity.  Moreover,  he  decided  that  the  rate of formation of new  spots 
is inversely  proportional  to  the  time  elapsed  after  the  beginning of the  cycle, 
whereas  the rate of sunspot  decay is independent of time.  Such  an  explana- 
tion  can  hardly  be  accepted.  Although  the  rate of formation of new spots 
may  possibly  be  proportional  to  the  intensity of solar  activity,   st i l l   this  does 
not  apply  to  the  rate of variation of existing  sunspots.  This is evident,  for 
instance,   f rom  the  fact   that   the   product  of the  sunspot-group  frequency  times 
the  average  group  l ifetime is proportional  to  the Wolf number (Kopeck$, 
1959). 

its northern  and  southern  hemispheres  separately.  However,  this  will  not 
be  gone  into  at  this  point,  but w i l l  be   reserved  for   the  discussion,   la ter   in  
the book, of the  asymmetry of solar   act ivi ty   in   the  northern and southern 
hemispheres.  It  should  be  observed,  though,  that  the  formulation of the 
Schwabe-Wolf law is almost  the same for  the  two  solar  hemispheres,   and 
differs  only  in  certain  minor  details .  At present,  however,  this is not im- 
portant. 

Finally,  it  should  be  mentioned  that  the  Schwabe-Wolf  law  applies not 
only  to  sunspot  activity  but  to  other  types of solar   act ivi ty  as well.  This 
is equally  true of another  basic l a w  describing  solar  activity,   namely 
Sporer's  law,  which  will  be  discussed  in  the  next  section. 

The  Schwabe-Wolf  law  can  be  formulated  either  for  the  entire  sun  or  for 
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§ 3. SpBrer 's  Law 

Series of sunspot  observations  extending  over  many  years  have  shown 
that  most  sunspots  appear  between  latitudes  from 545" to f 5'. Outside of 
these  regions,  sunspots  have  been  observed  only  very  rarely,  and  these 
have  been  mainly  pores.  The  maximum  latitude  in  which a pore  has  been 
recorded is 71'. On  the  average,  the  width of the  sunspot  zone is about 20". 

The  studies of Carrington (1858),  and later the  independent  studies of 
Spbrer  (1881)  and  Maunder  (1917).  showed  that  the  entire  sunspot  zone 
shifts  during  the  cycle  from  higher  to  lower  heliographic  latitudes.  Usually, 
the first sunspot  groups  in a given  solar  cycle  appear at latitudes of about 
30". and  at  the  end of the  cycle  the  average  latitude of the  spot  groups is 
about 8". Table 4 gives  the  Greenwich  data  for  the  average  yearly  helio- 
graphic  latitudes of sunspots  from  1878to 1953. 

T A B L E  4 

Average  yearly  heliographic  latitudes of sunspots  from 1878 to 1953 (Greenwich  data) 

-~ 
Year 

1878 
1879 
1880 
1881 
1882 
1883 
1884 
1885 
1886 
1887 
1888 
1889 
1890 
" 

~ 

- ? 

7O.58 
21.96 
19.64 
18.30 
17.81 
13.06 
11 2 6  
11.77 
10.38 
8.44 
7.39 
11.61 
21.99 

"- ~ ~ 

~ 

Year __ 

1891 
18Y2 
1893 
1894 
1895 
1896 
1897 
1898 
1899 
1900 
1901 
1902 
1903 
" 

- 
I 

20'31 
18.39 
14.49 
14.18 
13.54 
14.33 
7.96 
10.49 
9.54 
7 .I4 

10.37 
17.64 
19.94 

~ 

~ 

- 
Year 

~ 

1904 
1905 
1906 
1907 
1908 
1909 
1910 
1911 
1912 
1913 
1914 
1915 
1916 
- 

- 
? 

16'57 
13.10 
13.99 
12.12 
10.38 
9.71 
10.53 
6.49 
8.06 
23.23 
21.79 
18.77 
15.81 

__ 

~ 

- 
Year __ 

1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
__ 

- 
t 

14'63 
12.75 
10.76 
10.43 
7.90 
8.02 
15.26 
22.73 
20.20 
18.66 
15.05 
13.50 
10.51 

- 

- 

- 
Year - 
1930 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 
__ 

- 
" 

P 

9'87 
8.31 
8.32 
10.56 
23.75 
23.30 
20.35 
17.02 
14.79 
13.42 
11.17 
10.38 
8.99 
- 

Year 

1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 

- 

t - 
10'09 
21.53 
20.22 
20.00 
17.38 
14.19 
13.33 
13.41 
11.32 
8.00 
9.86 

- 
The  data  in  Table 4 show  that  the  rate of drift of a sunspot  zone  changes 

during  the  cycle. On the  average,  this  rate is highest  during  the  increas- 
ing  part  of the  cycle and then  it  gradually  decreases.  In  the  epoch of sun- 
spot  maximum  the  average  latitude of a  sunspot  zone is about 15". 

Spbrer ' s  law is best  illustrated  using  the  "butterfly"  diagrams of 
Maunder,  which  show  the  latitudes of all the  sunspots,   regardless  of  their  
size,  plotted on the  corresponding  t ime  scale.   Figure 2 shows  the  butter- 
fly diagrams  for   the 12th  through  the  18th  solar  cycles  (Zurich  enumera- 
tion).  In  addition  to  showing  the  drift of the  sunspot  zones,  the  butterfly 
diagrams  make it clear that  low-latitude  spots  from  the  previous  cycle 
are generally  observed  near  the  epoch of sunspot  minimum,  simultaneously 
with  high-latitude  sunspots of the new cycle.  Consequently,  the  actual 
length of a solar   cycle  is somewhat  greater  than  the  time  between  successive 
epochs of minimum. 

It  should  be  noted,  by  the  way,  that it is rather  difficult  to  differentiate 
between  the  old  and  new  sunspots  in  the  epoch of minimum.  However,  such 
a differentiation  can  be  made  quite  reliably  according  to  the  magnetic  polarity 
of the  spots,  since, as Hale  and  Nicholson  (1938)  have  shown,  this  polarity 
changes  from  cycle  to  cycle.  
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Gnevyshev  (1944)  showed  that  the  Sparer  curves  can be translated  along 
the  t ime  axis   in   such a way  that  they  will all coincide  approximately  with 
one  another.   The  scatter of points  about  the  mean,  on  the  curves of dif- 
ferent  cycles,  is about lo, a value  which is within  the  margin of e r r o r   f o r  
determining  the  sunspot  coordinates.   This  factor  can  be  uti l ized for fore- 
casting  purposes.  

Gleissberg  (1958)  studied  the  variation of the  width of the  sunspot  zone 
during  the  solar  cycle.   On  the  basis of an  examination of the  outer  points 
on  the  butterfly  diagrams,  he  found  that  on  the  average  the  width of the 
sunspot  region  varies,  concomitantly  with  the  cyclic  curve, from 8" in  the 
epoch of minimum  to  36"  in  the  epoch of maximum. This  being  the case, i t  
is hardly  possible  to s p e a k  of a s imple  dr i f t  of the  sunspot  zone  toward  the 
solar   equator .  

According  to  Kopeck5 (19581, spot  groups  appear  at   high  heliographic 
latitudes  mostly  in  the  epoch of high  sunspot  maxima,  rather  than  at  the 
beginning of the  11-year  cycle.  This  result is consistent  with  Gleissberg's 
conclusions  concerning  the  latitudinal  width of the  sunspot  zone. 

Recently,  Becker  (1959)  has  shown  that a second,  high-latitude,  sunspot 
zone  exists.   Whereas  the  f irst   sunspot  zone  drifts   during  the  cycle  from 
higher  to  lower  latitudes,  the  second  zone  gradually  moves  toward  higher 
latitudes  during  the  period  between  the  epochs of minimum  and  maximum. 
In  his  study of this  zone,  Becker  used  the  average  spot area as the  main 
parameter  describing  sunspot  activity.   This  index  was  determined for in- 
dividual  latitude  zones  and  years,  and  also for the  entire  cycle.  The  high- 
latitude  sunspot  zone  could  be  distinguished  when  isoline  charts  for  the  in- 

dex 1 csi/+ 2 were plotted.  Here s, is the  average  sunspot-group 
j d  

area, n is the  number of groups  in a given  latitudinal  zone  in a given  year, 
and Ni s   t he   number  of groups  in a given  cycle  in  all  the  latitudinal  zones. 

It  should  be  mentioned  here  that  the  possibility of the  existence of a 
second,  high-latitude,  sunspot  zone  had  already  been  hinted  at  in  the  previ- 
ously  cited  studies of Gleissberg  and  Kopeckf. 

isoline  charts  represent  two  physically  different  aspects of solar  activity.  
Whereas  Maunder 's   diagrams  indicate  the  frequency of occurrence of sun- 
spot  groups,  Becker's  diagrams  show  the  average  intensity of the  groups. 
Since  this is the case, i t  is difficult  to  agree  with  Becker's  statement  that 
Maunder 's   butterfly  diagrams are more  schematic   than  the  Becker   diagrams.  

In  the same article  Kopeck?  verifies  the  actual  existence of the  second, 
high-latitude,  sunspot  zone,  using as an  index  the  daily  average  spot area. 
The   la t te r  is defined as ZS,IN,  where zsi is the  total area of the  sunspot 
groups,  and N is the  number of groups  in a given  day.  Kopeckf  also  demon- 
s t ra tes   that   the   use of this  index  makes  it   possible  to  distinguish  the  second 
sunspot  zone  more  clearly.  

In  his  most  recent  study of this  subject,  however,  Kopeckf  (1962)  con- 
cludes  that,  because of Becker 's   somewhat  biased  approach  to  the  data,   the 
existence of the  second,  high-latitude,  sunspot  zone  cannot  yet  be  consid- 
e red  as definitely  proven. 

Finally, let us also  mention  that  Lockyer's  explanation  (1904),  accord- 
ing  to  which  there is no  s ingle   sunspot   zone  but   ra ther   several   centers  
which  migrate  toward  the  solar  equator  during  the  11-year  cycle,  has 

Kopeck9  (1960)  has  shown  that  Maunder's  butterfly  diagrams  and  Becker's 
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recently  been  revived.  Bell  (1960)  studied  the  magnetic  fields of sunspots 
using  data  from  Mount  Wilson  and  investigated  the  latitudinal  distribution 
of sunspot  groups  in  order  to  obtain a multizonal  pattern  decribing  sunspot 
formation, on which  the  maxima of these  zones  were  separated from one 
another  by  about 5" of latitude.  According  to  Bell,  these  subzones  do  not 
shift   toward  the  equator  but  rather  appear  sometimes  and  disappear  some- 
t imes.   This  explanation  has  been  represented  graphically  by  Bell  by means 
of a "caterpil lar"  diagram  (Figure 3), which  suggests  comparison  with 
Maunder's  butterfly  diagram. It should  be  observed,  however,  that a divi- 
sion of the  solar  disk  into 2" zones,  even  when  the  results  obtained are 
smoothed,  may  lead  to false conclusions,   since  in  most cases the  spot 
groups  extend  over  more  than 2"  of latitude.  Although  Bell's  results  ap- 
pear  very  attractive  from  the  viewpoint of AlfvCn's  theory  (1952),  neverthe- 
less no arguments  against  the  objection  just  raised  have  yet  been  found. 
Vitinskii  (1961d)  has  shown  that  the  "caterpillar"  diagram  represents a 
fictitious  result,  obtained as a resul t  of dividing  the  solar  disk  into  latitudi- 
nal  zones  which are narrower  than  the  latitudinal  width of average-size  sun- 
spot  groups  and as a resul t  of combining  spot  groups of different  magnetic 
types  arbitrarily.  In  addition,  Eigenson  has  stressed  the  insufficient  statis- 
t ical   substantiation of Bel l ' s   resul ts ,  a factor  which  also  renders  her  con- 
clusions  unacceptable. 

30 

20 

30 

40 

In  conclusion,  let   us  observe  that   Sporer 's   law  has a somewhat  different 
form  for  the  northern and southern  solar  hemispheres.   However,   this  prob- 
lem will  be  discussed  in  detail  below,  in  connection  with  the  asymmetry of 
solar  activity.  

Thus,  we  have  considered  two  basic  regularities of solar  activity.  The 
Schwabe-Wolf  law  and  SpGrer's  law.  The  first  law  describes  the  variation 
in  relative  sunspot  number,   and  in  other  solar  indexes,   and  provides a 
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quite  sharp  definition of the  epoch of sunspot  maximum  and a less s h a r p  
definition of the  epoch of sunspot  minimum. It is represented  by a continu- 
ous function.  The  second  law  reflects  the  change  in  the  average  latitude of 
sunspots  and  other  active  solar  formations,   and  i t   defines  quite  sharply  the 
epoch of minimum  but  gives  practically  no  indication at all of the  epoch of 
maximum.  This law is represented  by a discontinuous  function of t ime,   in  
which  the  discontinuities  correspond  to  the  epochs of sunspot  minimum for 
each  cycle.  

The  relation  between  the  Schwabe-Wolf l a w  and  Spijrer's  law is very  im- 
portant,  and  it  has  particular  significance  with  respect to the  forecasting of 
solar   act ivi ty .  

S 4. The  Correlation  between  the  Schwabe-Wolf L a w  
and  Sporer 's  L a w  

The  shifting of the  sunspot  zone as a function of the  variation  in  Wolf 
number  was  studied by Waldmeier  (1939),  who  used  the  data  for  the  years 
1836  through  1933,  that is, for  7 solar cycles. If WMis  the  maximum 
smoothed  monthly Wolf number  in a given  cycle, cp-oois the  average 
smoothed  heliographic  latitude of the  sunspot  zone  for the phase  50  solar  
rotations  prior  to  the  epoch of sunspot  maximum, qM is this  latitude  in  the 
epoch of maximum, and 'P+SO is this  latitude  for  the  phase  50 solar rotations 
after  the  maximum,  then  according  to  Waldmeier  the  following  relations 
are satisfied: 

'p-so = (17.58 1.74) + (0.0839 & 0.0189) W, (1.15) 

cp,=(8.19 f 1.36)+(0.0699 & 0.0l43)Ww (1.16) 
'p+so = (5.44 0.85) + (0.0427 +_ 0.0089) Ww (1.17) 

These  relations  show  that  the  sunspot  zone  reaches  higher  latitudes,  the 
g rea t e r  is the  maximum  relative  sunspot  number  for  the  given  cycle.  

The  correlation  between  the  Schwabe-Wolf l a w  and  Sporer's  law  was 
studied  in  detail  by  Gnevyshev  and  Gnevysheva  (1949). In their   approach 
to  this  problem,  these  authors  smoothed  the  yearly  average  lati tudes of the 
sunspot  zones  for  eight  different  11-year  cycles  (1856-1943).  In  order  to 
do  this,  they  used  the  average  curve  for  shifting of the  zone,  obtained  by 
translating  the  Sporer  curves  for  the  different  solar  cycles  unti l   the  best  
fit  was  found.  This  curve is shown  in  Figure 4 ,  where  the  points  indicate 
the  individual  determinations of fp. By measuring  the  t ime  intervals  between 
points  on  Spijrer's  curve  for  the  given  cycle  and  points  on  the  average  curve 
in   Figure 4 (these  points  corresponding  to  the  same  values of 9 )  and  then 
taking  the  average of these  intervals,  we  will  obtain  the  distance  along  the 
time axis over  which  the  average  curve  for cp ( t )  must   be   t rans la ted   in   o rder  
to  give  the  best  fit  with  the cp ( L )  curve  for  the  given  cycle.  In this  way,  the 
smoothed  latitude  values  listed  in  Table 5 were  obtained. 

After  studying  the  values of w for  corresponding  latitudes  in  different 
cycles,   arranged  according  to  the  total   "cycle  intensity" ZW (excluding  the 
minimum  years),  Gnevyshev  and  Gnevysheva  came  to  the  following  con- 
clusions. 

18 



1. The  change in Wfrorn cycle t o  cycle, a t  all latitudes  higher  than 
14", is proportional to xw. This  follows  from  the  fact  that the values of 
the  correlation coefficients  between W for  a given  latitude  and xw are 
higher. The values of W a t  latitudes of 12" and  below are independent of 
ZW, the  correlation coefficients  between  Wand Z W  being low. 

4 7 . 

FIGURE 4 

2. The  standard  deviations from the  mean W for latitudes of 12" and 

3 .  The more Z W  increases,   the  higher  will   be  the  lat i tude q a t  whictl 

The  first  two  conclusions  imply  that  on  the  descending  parts of the  sun- 

below are small, whereas   for  cp),I4" these  deviations are la rge .  

the  maximum  Win  the  given  cycle  is   at tained. 

spot-cycle  curves  ( that   is ,   at  low heliographic  latitudes) W depends  entirely 
on  the  latitude,  and  that  this  dependence  is  the same for all   cycles.   Const.-  
quently. i f  w i s  known,  the  average  sunspot  latitude  at  the  year of sunspot 
maximum  can  be  determined.  The  correlation  between  qMand X W i s  very  
high ( r  = f 0 . 9 4 )  and is given  by  the  expression 

= 7."4+0."0168W. (1.18) 

This relation  gives  the  latitude at the y e a r  of sunspot  maximum  with a 
standard  deviation of r tOO.9 ,  a value  which is within  the  allowable error 
for   measuring  the  sunspot   coordinates .  

The  following  conclusion  can  be  drawn from a study of the  relation  be- 
tween (py and Z W :  the   g rea te r  Zw i s ,   the  earlier the  epoch of sunspot 
maximum for the solar cycle   wil l   occur ,   that   i s ,   the   s teeper   wil l   be   the as- 
cending  branch of the  curve. T h i s  indicates  that  the  epoch of maximum  does 
not occupy a fixed  position  in  the  cycle,  and  may  shift  in  either  direction  de- 
pending  on  the  cycle  intensity. 
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Rubashev  (1958)  used  the  smoothed  yearly  average  sunspot  latitudes  obtained 
by  Gnevyshev  and  Gnevysheva in order  to  show  that  the  lat i tudes of the  epoch 
of minimum  seem  to  be  independent of the  maximum Wolf number W,. If 
we recall Waldmeier's  conclusion  concerning  the  high  correlation  between 
the  latitude  at  which  the  cycle  begins  and  the  maximum Wolf number,  then 
i t  is evident  that  the  height  wM.of  the  11-year  cycle is a function of the arc 
t r ave r sed  by the  sunspot  zone  during  the  cycle.  It is also  very  significant 
that   the   average  dr i f t   ra te   for   the  sunspot   zone is greater   the  higher  is the 
cycle  intensity. 

TABLE 5 

Smoothed  yearly  average  heliographic  latitudes of sunspots between  1856  and  1943 

Cycle 10 
1856 3 q 2  
1857 25.0 
1858 20.9 
1859  18.3 
1860 16.0 
1861  14.0 
1862  12.4 
1863 11.2 
1864 10.0 
1865 9.0 
1866 8.2 
1867 7.2 

Cycle 11 

1869 

Cycle 12 

1886 
1887 

1888 810 1904 16'6 
Cycle  13  1905 1 4 6  

1889  30.4  1906 12.9 
1890 25.5 1907 11.5 
1891 21.2 1908 10.3 
1892 18.5 1909 9.3 
1893 16.2 1910  8.4 
1894 14.2 1911 7.4 
1895 1 2 6  Cycle  15 
1896 11.2 1913 22.5 
1897 10.1 1914 21.2 
1898 9.1 1915  18.5 
1899 8.2 1916 16.2 

Cycle  14 1917 14.2 
1901 26.2 1918 12.6 
1902  22.0 1919  11.2 
1903 19.0 1920 10.1 

' 1 
~. 

1922 
Cycle  16 

1 9 2 3  
1924 
1925 
1926 
1927 
1928 
1929 
1930 
1931 
1932 

21.8 
22.7 
19.5 
17.1 
15.0 
13.2 
11.8 
10.6 

9.5 
8.5 

- " 
Year 

1937 
1938 
1939 
1940 
1941 
1942 
1943 

In  the  preceding  section,  while  discussing  Sp6rer's  law, w e  devoted a 
fairly  large  amount of space  to a description of the  second  (high-latitude) 
sunspot  zone,  which  appears  to  behave  according  to a reversed  SpBrer 's  
law.  In  relation  to  this,  it  would  be  interesting  to  consider  the  relation  be- 
tween  the  variation  in  the  latitude of this  zone  and  the  cyclic  variation of 
Wolf numbers.  Becker  (1959),  and  then  Kopeck9 (19601, have  established 
that  during  cycles of increased  intensity  the  second,  high-latitude,  zone 
reaches  its  highest  latitudes.  Consequently,  there is a definite  analogy 
between  the  correlations for  'pu and WH in  the  two  sunspot  zones. 

5. Some  Properties of the  Development 
of Sunspot  Groups 

We will   not  at tempt  to  consider  here  all  known special   features  of the 
development of sunspot  groups,  especially  propert.ies  related  to  the  origin 
of new  groups.  Since  the  main  subject of this  study is the  long-range  fore- 
cast ing of solar   act ivi ty ,   therefore   the  propert ies  of long-lived, o r   " r ecu r -  
rent ,  '' spot  groups w i l l  be of greatest  interest.  It  should  be  noted  that  the 
Greenwich  term  "recurrents,   which is applied  to  these  spot  groups, is 
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actually  somewhat  inaccurate,  since  they  continue  to  exist  for a long  time, 
and  do  not  simply  recur  over  several  solar  rotations.  Long-lived  spot 
groups  will   here refer only  to  groups  which  exist   for  more  than  one  solar 
rotation,  and all other  spot  groups  will   be  called  short-l ived  groups.  

the  sunspots,  and  the  dependence of this  lifetime  on  the  other  indexes  de- 
scribing  sunspot  activity.   The  early  investigations of Maunder (18901, 
based  on  the  ra ther   meager   data   for   the  years  1886  through  1889,  already 
established  that  the  most  frequently  occurring  sunspots  had a lifetime Of 

one  day.  Gnevyshev  (1938)  studied  the  lifetimes of spot  groups  on  the  basis 
of the  Greenwich  data  for  1912-  1934,  which  included  some 3000 groups. 
He found  that  the  frequency of occurrence  decreased  rapidly for spots of 
greater   l i fe t ime,  as shown by Figure 5.  In  the same article  i t   was  shown 
that  the  spot  lifetime is greater  in  lower  heliographic  latitudes. 

The  most  important  factor,  from  our  point of view, is the  lifetime of 

FIGURE 5 FIGURE 6 

Eigenson  studied  the  variation of the  lifetimes of sunspot  groups as a 
function of the  solar-cycle  phase  (Eigenson, 1940; Eigenson  and  Prokof'eva, 
1950).  In  this  study,  one  solar  rotation w a s  taken as the  unit of lifetime. 
The  results  showed  that  the  ratio of the  number of spot  groups  with  life- 
t imes of two or more  solar   rotat ions  to   the  number of spot  groups of unit 
lifetime  varies  during  the  cycle. 

on  the  group  maximum  area,  the  lifetime  unit  being 24 hours. He con- 
sidered  groups  with  maximum areas up to 400 millionths of a solar   hemi-  
sphere  and  with  lifetimes up to 40 days.  Gnevyshev's  results are plotted 
in   Figure 6,  from  which  it is evident  that  there is a linear  relation  between 
the  group area and  the  group  lifetime. 

The  dependence of the  lifetime of a long-lived  spot  group  (expressed in 
days)  on  the  maximum area of the  group w a s  considered by Vitinskii  (1958b). 
In  this  study,  the  Greenwich  data  for  1879 - 1950 were used,  and  only  spot 
groups  which  appeared  and  disappeared  at  distances less than 66" longitude 
from  the  central   meridian were investigated. A total of 327 long-lived 
groups  were  analyzed,  and  it  was  found  that  for  these  groups  there  was 
practically  no  correlation (of the  type  suitable for  forecasting)  between  the 
group  lifetime  and  the  group  maximum area: 

Gnevyshev  (1938)  also  studied  the  dependence of the  spot-group  lifetime 

rpx. = +0.42 & 0.04. 
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An analysis of the  extensive  data  available  for  short-lived  spot  groups 
during  these same years   showed  that   there  is an  essent ia l   d i f ference,   in  
this  respect,  between  long-lived  and  short-lived  groups  (for  the  latter, 
rsy,r = + 0.58).  Moreover,  the  relation  between  the  lifetime  and  maximum 
area for   short- l ived  groups is, strictly  speaking,  nonlinear.  For  long- 
lived  groups,  on  the  other  hand,  it  is much  c loser   to  a linear  relation, a 
fact  which,  incidentally, is also  indicated by the   sca t te r  of points  in Figure 6 
(taken  from  Gnevyshev's  art icle).  

For long-lived  spot  groups  the  index of maximum  magnetic  intensity  for 
the  group is much  mor;  significant  than  the  maximum  group area. Vitinskii 
(1957)  applied  the  method of quali tative  correlation  in  order  to  demonstrate 
that  long-lived  groups  with  maximum  magnetic  intensities of 3000  gauss  and 
above  have  an  average  lifetime of t h ree   o r   more   so l a r   ro t a t ions .  Spot 
groups  with  maximum  magnetic  intensities of less  than  3000  gauss,  on  the 
other  hand,  last   for  no  more  than  two  rotations.   Gimmel'faro  (1950)  has 
shown  that  the  maximum  magnetic-field  intensity of regular   spots  is attained 
later  than  the  maximum area. This  is also  the case for  long-lived  spot 
groups. 

The  development of spot  groups  in  time  has  been  considered  by  many 
authors,  s o  that  here  it  is enough  to  give  only  the  main  results,  without 
going  into  detail.  According  to  Waldmeier  (1955),  spot  groups  can  be  di- 
vided  into  structural classes w h i c h  reflect  both  the  relative  locations of 
the  spots and their   s izes   and  shapes.   The  Zurich  c lass i f icat ion of Brunner  
and  Waldmeier  contains  nine  classes,  ranging  from  pores  through  complex 
polynuclear  groups  to  single  regular  spots.  This  classification is a s ta t ic  
one,   however,   in  that   i t   characterizes  the  group  structure on a given  day 
only. N o  satisfactory  dynamic  classification of spot  groups  has  been  de- 
veloped s o  far, since  the  structural  evolution of spot  groups  can  take  place 
in  very  diverse  ways.  The  following  development  chains,  in  terms of class 
le t ters ,   arethemostcommon:   A-B-A,   A-B-C-B-A,   A-B-C-D-C- 
H-J-A,   A-B-C  "D-E-F-G-H-J-A.   Thelast   twosequences  arethe 
most  typical  ones  for  long-lived  spot  groups. 

The  Brunner-Waldmeier  classification is closely  related  to  the  number 
of spots  in a group.  This  has  led  some  authors  (DjurcoviE,  1953)  to  use 
the  group-class  data  to  prescribe a definite  weight  to  each  spot-group  class, 
a weight  which is essentially  equivalent  to  the  number of spots  in  the  group. 

The  variation of the  number of spots  in a group  during  group  develop- 
ment  has  been  considered by Becker  and  Kiepenheuer  (1953).  The  develop- 
ment  curves  for  this  index were found  to  be  very  nonuniform,  even  after 
reducing  the  parameter  to  the  center.   Since  the Wolf numbers are generally 
determined  without  making  such a reduction  to  the  center,  these  curves  have 
practically  no  forecasting  value.  This is also  the  case  for   curves   represent-  
ing  the  variations of the  group classes. 

W e  have  still   not  ascertained  which  parameter  describes  group  develop- 
ment  better,   the  spot  number or  the  total area. However,   the  curves  for 
the area variation are more  regular,   and  thus  they  can  be  used  to  some 
extent to predict  the  future  development of the  group.  This  problem  has 
been  considered  in  most  detail  for  individual  spots by Dyson  (1925)  and  for 
entire  spot  groups by 01'  (Eigenson  et  al.,  1948). A study of t he i r   a r ea -  
development  curves  shows  that  the  maximum  area is attained  on  the  7th  to 
10th  day  after  the  appearance of the  group (on the  average),  after  which, 
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for  long-lived  groups,  the area gradually  decreases.   The  area-develop- 
ment   curves  are characterized  by a steep  ascent  and a rather  gently  slop- 
ing  drop,  and  in  this  respect  they are very similar to  the  cyclic  curves.  

S 6 .  Active  Longitudes 

The  active  longitudes  on  the  sun  have a cer ta in   importance  for   solar-  
activity  forecasting,  and s o  a few  aspects of this  subject  will now be  discus- 
sed.   Since a great   deal  of controversy  has  been  caused by the  lack of an  ex- 
act  definition of an  "active  longitude, " as opposed  to  an  "active  region, " 
therefore  let  us f i rs t   t ry   to   def ine  these  concepts   more  c lear ly .  

The  active  longitude is a longitudinal  interval  on  the  sun  within  which, 
for  a long  t ime  (several   years or more),   the  activity  has  been  consider- 
ably  greater  than  that  in  any  other  longitudinal  interval. 

which  certain  forms of solar  activity  have  continuously  predominated  for a 
long  time,  in  comparison  with  neighboring  regions.  The  lifetime of an  active 
region  ranges  from  one  to  ten or more   so la r   ro ta t ions .  

These  definitions  indicate  two  essential  differences  between  active  longi- 
tudes  and  active  regions: 

1) the  lifetimes of active  longitudes  are  considerably  higher  than  those 
of active  regions: 

2 )  in  active  longitudes,  as  opposed  to  active  regions,  the  solar  activity 
need  not  predominate  continually  over  the  activity  in  neighboring  intervals. 

Consequently,  the  concept of an  active  longitude is more  comprehensive 
than  the  concept of an  active  region.  Active  regions  which  occur  in  active 
longitudes are more  stable,   particularly  with  respect  to  sunspot  activity.  

The  following  conclusions  can  be  drawn  on  the  basis of the  many  studies 
of active  longitudes  which  have  been  made,  especially  those of Losh  (1938), 
Ivanov  (1933,  1935,  1936),  and  Vitinskii  (1958a,  1960): 

1. active  longitudes  remain  in  virtually  the  same  longitudinal  intervals 
for  2 or 3 cycles; 

2. in active  longitudes  Faye's  law of differential  rotation is not  valid, 
and  the  rotation is apparently  rigid; 

3.  active  longitudes are "pcpulated"  mostly by long-lived  spot  groups 
with  maximum  areas  in  excess of 500 millionths of the  solar  hemisphere;  

4 .  according  to  Losh,  active  longitudes  in  the  northern  and  southern 
solar   hemispheres   are   located  a t   d is tances  of approximately  180"  from 
each  other.  

The  objection of Becker (1955) that  active  longitudes  do not actually 
exist  is largely  based  on  his  subjective  approach  to  the  concept of an  "active 
longitude. I '  The  construction of isolines  for  the  various  solar  indexes  has 
shown  that,   in  any  case,   the  f irst   three  conclusions are corroborated by the 
data   for   seven  solar   cycles .   The  s tudy of active  longitudes  and of the  active 
regions  originating  in  these  longitudes  may  throw  much  light  on  the  very 
complicated  and  confusing  problem of solar-activity  fluctuations. 

An active  region (or center  of  activity) is a region (or field)  on  the  sun  in 
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$7. The  22-Year  Sunspot  Cycle 

Studies of the  magnetic  f ields of sunspots,  which  were  begun  by  Hale 
and  his  co-workers  (Hale,  1913)  during  the  14th  11-year  solar  cycle,  have 
established  the  existence of a 22-year  sunspot  cycle.  Still earlier assump- 
tions  concerning  the  existence of such a cycle  had  been  advanced  by Wolf 
(Korteweg,  1883),  Turner  (1913b),  and  Ludendorff  (1931).  However,  Hale's 
conclusions,   contrary  to  those of the  other  investigators,   were  based  on a 
very  significant  observational  fact ,   namely  the  reversal   of  the  magnetic 
polarity of sunspots  from  one  11-year  cycle  to  thenext.   Subsequentobserva- 
tions of sunspot  magnetic  fields  have  confirmed  this  result.  It  has  been 
found  that  during odd 11 -year  cycles  (according  to  the  Zurich  enumeration) 
the  polarit ies of the  preceding [ p ]  spots  in  the  groups are the   same as the 
polarity of the  solar   hemisphere.   This   regular i ty   has  so  far been  observed 
over   three  22-year   cycles .  

Observations of the  magnetic  fields of sunspots  have  made  it  possible  to 
establish  the  beginnings  and  ends of the  11-year  cycles  with  higher  accuracy. 
The  spots of a new cycle  generally  start   forming  even  before  the end of the 
old  cycle,  and  this  overlapping of successive  11-year  cycles  has  in  some 
cases been  more  than 2 years .   The   use  of data on the  magnetic  fields of 
sunspots  has  given  the  differentiation  between  successive  11-year  cycles 
a sound  physical  basis,  since  spots  may  be  assigned  to  the old o r  new cycle 
depending  on  their  polarity. 

Since  studies of sunspot  magnetic  fields  cover  only a relatively  short  
period of t ime  ( less   than 6 0  years) ,   i t  is very  important  to  consider  the 
problem of the  stability of the  22-year  cycle  and  to  determine  its  relation- 
ship  to  the  11-year  cycle.  Such  an  analysis w a s  f i rs t   performed by Gnevy- 
shev  and 01' (1948),  who  used  the  yearly  relative  spot  numbers  for  the  years 
f rom 1700 through 1944 in  order  to  arrive  at   the  following  important  con- 
clusions. 

1. The  existence of a 22-year  cycle is verified by all the  available  data, 
except  for  the  data of one  cycle  pair  (cycles 4 and 5 in  the  Zurich  system). 

2. The  22-year  cycle  starts  with  an  even  11-year  cycle.  If w e  take  the 
sums  XW of the  yearly Wolf numbers  for  each  11-year  cycle,   then w e  ob- 
tain  the  following  correlation  coefficients  for  successive  11-year  cycles: 

reven, odd=+0.91 -c 0.106. 

In  subsequent  studies of the  22-year  spot  cycle  Kopeck?  (1950a)  estab- 
l ished  that   there   is  a quite  close  correlation  between  the  respective  phases 
of even  and odd 11  -year  cycles. A particularly high correlation is observed 
for  the  second  through  fifth  years  after  the  beginning of the  11-year  cycle. 
Kopeck: also  obtained  very  high  coefficients  for  the  correlation  between  the 
maximum  yearly  relative  spot  numbers  for  the  even  and odd cycles .   For  
17  Zurich  11-year  cycles (with  the  exception of the  cycle p a i r  4-5),  the 
correlation  coefficient w a s  found  to be + 0.765 f 0.106. 

that  the  maximum  yearly Wolf numbers  for  the  even  and odd 11  -year  cycles 
are related by the  regression  equation 

Using  the  data  for  the  years 1700 through  1954,  Vitinskii  has  shown 
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It is also  an  interest ing  fact   that ,   according  to   the  table  of Schove  (1955), 
the  rule  of Gnevyshev  and 01' is valid  for 67 70 of all the  cases.  A s  the 
studies of Gnevyshev  and 01' imply,  and as equation (1.19) verifies,   the 
height of the odd cycle is greater  than  the  height of the  even  cycle.  This 
conclusion  also  follows  from  Table 6 ,  which is taken  from  the  art icle of 
Kopecky (195Ob). 

T A B L E  6 

Relation  between  even  and odd 11-year  cycles  (according to Kopecky) 

Phase 
Cycle  

Even . . . 
Odd . . . 
Ratiok . . 1.00 1.50 

The  first   two  rows of the  table  give  the  average  yearly Wolf numbers 
for  respective  phases of even  and odd 11-year  cycles.  The  third  row 
shows  the  ratios  between  the  numbers  in  the  second  row  and  the  numbers 
in  the  f irst   row. 

Equally  important  problems are those of the  correlation  between  the 
var ious  character is t ics  of the  22-year  cycle  and  the  correlation  between  the 
character is t ics  of the  22-year  cycle  and  the  two  11-year  cycles  which  make 
i t  up. The  studies of Chernosky  (1954)  led  to  the  following  conclusions: 

1. the  average Wolf number  for a 22-year  cycle  and  the  sum of the rel- 
ative  spot  numbers  for  this  cycle are inversely  proportional  to  the  cycle 
duration; 

ative  spot  numbers  for  this  cycle are directly  proportional  to  the  duration 
of the  next  22-year  cycle; 

3 .  the  average and maximum Wolf numbers  for a given  11-year  cycle, 
and  also  the  sum of the  relative  spot  numbers  for  this  cycle,   are on  the 
whole  inversely  proportional  to  the  duration of the  preceding  11-year  cycle. 

Since  Chernosky's  correlation  coefficients are relatively low and are of no 
use  for  forecasting,  we  will  not  give  his  regression  equations  here. 

A s imilar   s tudy w a s  undertaken  later by Chistyakov  (1959). who verified 
Chernosky's  first  conclusion.  Moreover,  Chistyakov  showed  that  the  higher 
the  intensity of the  preceding  22-year  cycle,  the  lower  will  be  the  intensity 
of the  following  cycle  and  thus  the  longer  it  will  last.  Finally,  Chistyakov's 
studies  also  show  that  the  correlation  between  the  various  characteristics 
of the  22-year  cycles is no  longer  observed  during  epochs of sunspot  ex- 
t rema  in   secular   cyc les ,  a fact  which  will  be  considered  below. 

Some  authors  (Bezrukova,  1951,  1957;  Chistyakov,  1959)  maintain  that 
there   a l so   ex is t s  a 44-year  cycle,  but  it  is still  difficult  to  draw  any  definite 
conclusions  concerning  this,  since  this  facet of the  development of so la r   ac-  
tivity  has  actually  been  observed  only  during  the  last  eight  11-year  cycles. 
Nevertheless,  this  postulate  concerning a 44-year  cycle  has  given  some 
posit ive  results for forecasting. 

sunspots  has  induced  some  authors (see, for  example,  Gleissberg,  1952) 
to   disregard,  if  not  to  deny  openly,  the  existence of the  22-year  cycle. 

2. the  average Wolf number  for a 22-year  cycle  and  the  sum of the   re l -  

The  lack of a sufficiently  long series of magnetic-field  observations  for 
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However,  there are certain  other  factors  which  offer  an  indirect   proof of 
the  existence of this   cycle .   For   example,   there  are indications  that  there 
may  be  a 22-year  period of variation  in  the  solar  diameter  (Cimino,  1944), 
while, in addition,  Tuominen  (1952)  has  discovered a 22-year  cycle  in  the 
variation of the  proper  motions of sunspots  according  to  latitude. 

At any  rate,  since  the  law of Gnevyshev  and  01'  does  not  hold  true  for 
the  cycle  pair  4-5, i t  is sti l l   impossible to draw  any  final  conclusions  con- 
cern ing   the   reversa l  of the  magnetic  polarity of sunspots  from  one  11-year 
cycle  to  the  next. In this  connection,  it  will  be of special   interest   to  study 
the  magnetic  fields of sunspots  during  low-level  cycles of solar   act ivi ty .  
At present w e  can  only  say  that  either  the  rule of alternating  sunspot  polarity 
is just   not   observed  in   some  cases  o r  else  the  alternation of high-level odd 
and  lower-level  even  11-year  cycles is not  always  consistent  with  the re- 
v e r s a l  of the  magnetic  characterist ics.  

5 8.  The  80-Year  to  90-Year  Sunspot  Cycle 

From  the  curve  in  Figure  1,   which  shows  the  variation of the  relative 
spot  number  during 18 solar   cycles   (according  to   the  data  of the  Zurich 
Observatory) ,   i t  is evident  that  in  addition  to  the  11-year  cycles  this  in- 
dex  also  undergoes  oscillations  with  much  longer  periods.  This w a s  f i rs t  
pointed  out by Wolf,  and  subsequently  various  authors  have  studied  this 
problem  (Gleissberg,  1945;  Eigenson,  1947).  The  main  conclusion  to  be 
drawn  from  all  these  studies  is  that a long  sunspot  cycle  with  an  average 
duration of 80  to  90  years  also  exists.  The  80-year  to  90-year  cycle is 
sometimes  called a "secular"  cycle,   because  i ts   duration is close  to  one 
century.  The  average  duration of the  80-year  to  90-year  cycle  and  the 
stability of this  cycle  cannot  yet  be  determined,  because of the  lack of 
relevant  data.   Therefore,   here we  will  just  give  some  results  which  have 
a direct   bearing on the  prediction of solar  activity. 

First ,   the  80-year  to  90-year  cycle  shows up most  clearly  in  the  varia- 
tion of the  sums ZW of the  yearly Wolf numbers  over  the  22-year  cycle,  in 
the  variation of the  maximum  monthly Wolf numbers W,, and  in  the  varia- 
tion of the  duration t of the  11-year  cycles.   Table 7 l is ts   a l l   these  data;  

TABLE 7 

Main characteristics of the  80-year to 90-year sunspot cycle 

Cycle No. 

1132 

624 

1349 

W M  ___ 
92.6 
86.5 

115.8 
158.5 
141.2 
49.2 
48. I 
71.7 

146.9 
131.6 
~- 

Cycle N( 

13.6 
12.3 
12.7 16 
10.6 

9.6 18 
12.5 

'1L.w 
"" 

1169 

846 

815 

1016 

. 

W M  

97.9 
140.5 

14.6 
87.9 
64.2 

105.4 
78.1 

119.2 
151.8 

. ~ ~. 

"~ ~ 

t 

11.2 
11.1 
10.1 
12.1 
11.9 
10.0 
10.2 
10.4 
10.1 

~~ 

26 



columns 3 and  4  give  the  data of Gleissberg  (1952)  and  column  2  gives  the 
data of Eigenson  (Eigenson  et al., 1948). 

If the  data  in  columns 3 and 4 are smoothed  using  the  formula 

where a' is the  index  in  question  during  the  ith  cycle,  then  we  obtain  the 
following  epochs of sunspot  minimum  and  maximum  for  the  80-year  to  90- 
year   cycles   (according  to   the  Zurich  enumerat ion of the  11-year  cycles): 

Minimum Maximum 

6th 3rd 
14th  9th 

Consequently,  the  present  cycle  appears  to  fall  in  an  epoch of maximum 
for  the  80-year  to  90-year  sunspot  cycle.  

In his  "eruption"  hypothesis,  Waldmeier  (1935)  involuntarily  rejected 
all  possibility of a correlation  between  successive  11-year  cycles  and  also 
of the  existence of longer   solar   cycles   (such as the  80-year  to  90-year 
cycle).  In  relation  to  this,  it  would  be  very  interesting  to  consider  the 

- - ." . 

Cycle No. 
" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

T A B L E  8 

Coefficienrs of Stewart-Panofsky  formula for 18 solar 

a 
~~ 

2.39 
2.80 
3.75 
2.68 
3.85 
4.31 
3.15 
4.20 
3.29 
2.57 
2.;; 
3.80 
3.76 
4.45 
3.87 
3.19 
3.82 
3.66 

a(*) 
- 

3.09 
3.46 
3.57 
3.69 
3.81 
3.52 
3.26 
3.16 
3.17 
3.46 
3.83 
3.90 
3.82 
3.73 

b 

0.55 
0.90 
1.11 
0.67 
0.89 
0.81 
0.69 
1.07 
0.75 
0.69 
0. PP 
0.92 
0.90 
1.07 
1.01 
0.90 
0.88 
1.10 

_____ 

b(4) 

~~ 

0.85 
0.88 
0.81 
0.80 
0.84 
0.80 
0.81 
0.82 
0.80 
0.84 
0.90 
0.90 
0.90 
0.90 

: l e  (least-squares method) 

log F 

+ 0.906 
1.897 
1.792 
1.672 
0.926 
0.272 
1.075 
1.476 
1.365 
1.627 
1.912 
1.611 
1.231 
1.048 
1.388 
1.544 
1.269 
1.917 

. "~ 

[log F ] ( 4 )  

+1.319 
1.244 
1.076 
0.962 
0.980 
1.216 
1.490 
1.611 
1.610 
1.520 
1.382 
1.308 
1.295 
1.398 

w(4) 
H 

120.8 
107.8 

88.6 
78.4 
89.8 

105.8 
120.6 
120.2 
105.6 

96,O 

8 9 4  
87.4 

87.8 
1 0 2  6 

variation of the  coefficients  in  the  Stewart-Panofsky  formula  (1.10)  from 
cycle  to  cycle.  W e  observed  previously  that  the  assumption  that  coeffici- 
ents  a and b are constant  constitutes  only a very  rough  approximation. 
Moreover,  Stewart  and  Panofsky  (1938),  using  different  methods,  obtained 
sharply  differing  values of a, b, and i? Finally,  Vitinskii  considered 
formula (1.10) in  logarithmic  form  and  solved a sys t em of such  equations 
for  each  11-year  cycle,   using  the  least-squares  method,  to  obtain  the 
values of coefficients a, b, and  log  Fshown  in  Table 8. 

t inct   secular  variation.  Smoothing  according  to  formula (1.20) (see 
I t  is evident  from  Table 8 that  coefficients a and F exhibit a quite  dis- 
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columns 3 ,  5, 7, and 8 of Table  8)  gave  virtually  the same epochs of sun- 
spot   extrema  for   the  80-year   to   90-year   cycle  as did  the  smoothed  values of 
of ZW (4) and t ('1. Moreover,   the  data  in  Table 8 show  that  the  variation of 
a(') is opposite  to  that of (log p )  and Wg'. This  is perfectly  natural ,   since,  
according  to  equations  (1.1)  and (1.21, the  quantities log W ~ a n d  T(the  length 
of the   r i s ing   par t  of the  curve)  vary  in  an  opposite  manner.   On  the  other 
hand,  coefficient b, which  almost  does  not  change,  shows  no  secular  varia- 
tion  and  thus  correlates  very  weakly  with  coefficient 0. 

Therefore,  with all due  respect  to  Waldmeier's  "eruption"  hypothesis, 
i t  is impossible  to  disregard  completely  the  existence of cer tain correla- 
tions  between  the  11-year  cycles. At any  rate,  the  study of long-term  solar  
cycles   represents   one of the  most   vi ta l   problems  re la ted  to   the  forecast ing 
of solar   act ivi ty .  

Becker  (1954)  showed  that  the  rate of drift  of a sunspot  zone is a l so  
influenced  by  the  80-year  to  90-year  cycle.  According  to  Gleissberg  (1955), 
the  duration of the 11 -year   cycle   can  be  determined  more  accurately  f rom 
the  average  ra te  of drift  of this  zone  than  from  the  cycle  height.  In  this 
respect,  Becker's  conclusion  appears  to  be  particularly  significant. 

§ 9. The  Asymmetry of Sunspot  Activity  in  the 
Northern  and  Southern  Solar  Hemispheres 

The  study of the  asymmetry of sunspot  activity  in  the  northern  and  south- 
e rn   so la r   hemispheres  is closely  related  to  the  study of the  propert ies  of the 
80-year  to  90-year  cycle.  Therefore,  although  this  factor is also al l ied  to  
other   aspects  of solar  activity,  w e  will  consider  it   in  the  present  context. 

F i r s t ,   l e t  us observe  that   the  11-year  solar-activity  cycle  consti tutes 
a single  process  encompassing  the  entire  sun.  This  statement is confirmed 
by the   resu l t s  of Gorbatskii  (Eigenson et al.,  1948)  and  Brunner-Hagger 
(Brunner-Hagger  and  Liepert,  1941).  According  to  these  authors,  there is 
a quite  close  correlation  between  the  spot areas in  the  northern  and  south- 
ern  solar  hemispheres.   Using  the  Greenwich d a t a  for   the  years   1879 
through  1954,  we  obtain  the  following  coefficients  for  correlation  between 
the  maximum  yearly  spot areas and  the sums of the  year ly  areas over  the 
11-year  cycle,  for  the  northern  and  southern  solar  hemisphere: 

r =+0.63 and r 
'N, '9 Z'N, X'S 

= +0.86. 

Moreover,  the  correlation  established by Waldmeier  between  the  length 
of the  r ising  branch of the  curve and the  intensity of the  cycle is equally 
evident  no  matter  whether  the  spot-area  indexes  for  the  entire  solar  disk  or 
for  the  individual  hemispheres  are  used  (Brunner-Hagger 's   correlation 
coefficients are -0.45  and  -0.44,  respectively).  Thus, all the  features  of 
solar-activity  asymmetry  in  the  northern  and  southern  hemispheres  rep- 
resent  effects of second  order .  It should  be  noted, by the  way,  that  insofar 
as the Wolf numbers  have  not  been  determined  separately  for  the  two  hemi- 
spheres  (except  for 10 y e a r s  of observations  at  Zurich) all the  studies of 
this  problem  have  been  based  on  the  Greenwich  data  for  spot areas. 

1400 28 



A study  made by Maunder  (1904) of the  variation of sunspot areas in  the 
northern  and  southern  hemispheres  for  the  years 1874 to  1902 led  to  the 
following  conclusions. 

1. The  spot-area  curves  for  the  12th  and  13th  cycles  have  doublemaxima 
for   the  northern  hemisphere and single  maxima  for  the  southern  hemisphere,  
the  single  maxima  being  the  higher of the  two. 

points on the  double  maxima are separated by about  three  years,   the  trough 
in  between  corresponding  to  the  epoch of maximum  for  the  single-maximum 
cycle. 

3.  The  epochs of extrema  for   cycles  of double  maxima  occur earlier than 
the  corresponding  epochs  for  cycles of single  maxima. 

4. The  cyclic  curves  representing  the  changes  in  lat i tude  in  the  northern 
and  southern  solar  hemispheres are also,   respectively,   single-maximum 
and  double-maximum  curves  [sic]. 

data,  by  Bezrukova  (1951,  1957),  whose  studies  also  led  to a more  detailed 
description of the  cyclic  curves  for  the  northern  and  southern  solar 
hemispheres .  

A study of seven  11-year'  sunspot  cycles  has  shown  that  there  are  two 
types of 11-year  cycles  ( in  the  respective  hemispheres),   namely  single- 
maximum  and  deformed. In later  works  Bezrukova  (1958)  refers  to d e -  
formed  cycles  as  double-maximum  cycles,  but  the  application of this   term 
to  all  the  data  studied by Bezrukova is, in  our  opinion,  not  quite  justified. 
The  deformation of a cycle  expresses  i tself  as a brief  decrease  in  spot 
area near  the  epoch of maximum,  but  does  not  necessarily  correspond  to 
a double  maximum. If in  one  hemisphere  the  cycle  has a single  maximum, 
then  in  the  other  it is deformed.  Between  1878  and  1923,  the  forms of the 
cyclic  curves  for  the  northern and southern  solar  hemispheres  alternated 
after  every  two  11-year  cycles,   whereas  since 1324  they  alternated  every 
cycle.  It  should  be  noted  that  this  change  in  the  alternation  pattern  for  the 
curve  forms  occurred  in   the 15th cycle,  that  is,  near  the  epoch of sunspot 
extremum of the  80-year  to  30-year  solar  cycle. 

established by Gnevyshev and Ol',  is equally  typical of both  the  northern  and 
southern  hemispheres of the  sun.  Moreover,  the  variation  in  the  height of 
the  11  -year  cycle  and  the  change  in  the  alternation  pattern of the  cyclic- 
curve  forms  may  indicate  the  existence of a 44-year  cycle, a possibility 
which w a s  mentioned  briefly  earlier.  

The  r is ing  par t  of the  curve  for  the  11-year  cycle is mainly  due  to  the 
development of the  activity of a deformed  cycle.  This  also  applies  to  the 
descending  part,  particularly a y e a r  o r  two  after  the  epoch of sunspot 
maximum.  The  maximum of an  11-year  cycle is mainly  determined by the 
maximum of the  single-maximum  cycle. An analysis of the  data  indicates 
a correlation  between  the  spot areas of the  secondary  maximum,  the  pre- 
ceding  main  maximum,  or  the  f irst   main  maximum of the  preceding  de- 
formed  cycle,  on  the  one  hand,  and  the  spot area of the  maximum  for  the 
following  single-maximum  cycle,  on  the  other. 

It  should  be  noted  that  Bezrukova  used  data  from  both  the  Greenwich  and 
the  Pulkovo  catalogs.  For  this  reason,  her  cyclic  curve  for  the  17th  cycle, 
in  particular,  does  not  correspond  to  the  Greenwich  data.  Figure 7 gives 

2. The  single  maxima  coincide  with  the  maxima  for  the  entire  sun;  the 

Subsequently,  these  conclusions were verified,  on  the  basis of extensive 

The  alternation of low and  high 11-year  cycles  in a Hale  pair,  which  was 
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the  cyclic  curves for cycles 12 through 18 for   the  northern and southern 
hemispheres  (the  solid  curve refers to  the  northern  hemisphere  and  the 
dashed  curve  to  the  southern  hemisphere).  As shown by the figure, the 
cyclic  curves  may  be  either  single-maximum  or  double-maximum. Up 
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FIGURE 7 

to the  14th  cycle,  Maunder's  rule w a s  observed. In the 14th cycle,  how- 
ever,  a  double-maximum  cycle w a s  observed for the  southern  hemisphere 
while  the  cycle  for  the  northern  hemisphere w a s  single-maximum,  after 
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which  the  alternation of double-maximum  and  single-maximum  cyclic 
curves  is observed  in  the  northern  hemisphere  only.  In  the  15th  and  17th 
11-year  cycles  the  curves  for  both  the  northern  and  southern  hemispheres 
were single-maximum  curves.  

As observed  previously,  one of the  effects of the  asymmetry of s o l a r  
activity  in  the  two  hemispheres is the  asynchronous  development of spots,  
a phenomenon  which is particularly  pronounced  near  the  epoch of maximum 
of the  11-year  cycle.  According  to  Brunner-Hagger  (Brunner-Hagger  and 
Liepert,  1941).  the  divergence of the  epochs of maximum  in  the  northern 
and  southern  hemispheres  for  cycles  11  through  17  amounts  to 1.7 y e a r s ,  
which is equivalent  to  an  effective area decrement of 200 millionths of the 
solar   hemisphere.  

1956;  Bezrukova,  1957)  have  shown  that  the  asymmetry of solar  activity  in 
the  two  hemispheres  varies  with  the  80-year  to  90-year  cycle. To il lus- 
trate  this  feature,   the  following  data  ( taken  from  Dizer 's   art icle)  show  the 

variation of the  parameter   where n and s are respectively  the n--s 

average  spot  lat i tudes  in  the  northern and southern  hemispheres:  

+ 0.50 1 + 0.11 1 -0.36 I -0.34 I -0.23 

The  studies of many  authors  (Brunner-Hagger  and  Liepert,  1941;  Dizer, 

1856 - 1866 1867 - 18'78 1879 - 1889  1890 - 1901  1902 - 1913 

1924 - 1933 1934 - 1943  1944 - 1954 
1914--g23 -0.15 1 +0.10 I + 0 . 1 2 1  +0.20 

Since  the series contains 9 members   and 1 minimum,  the  probability of a 
cyclic  variation  is ,   according  to  the  cri terion of Gleissberg (19461, better 
than  99.5 70. 

regularity of the  distributions of spot-area  differences  in  the  northern and 
southern  solar  hemispheres  within  the  11-year  cycle  have s o  far failed 
(Vsekhsvyatskii, 1950; Bogorodskii  and  Zemanek,  1950). 

Finally,  it  should  be  mentioned  that  all  attempts  to  establish  any  periodic 

Ij 10. Fluctuations in Solar  Activity 

If w e  plot a development  curve  for  the  11-year  cycle,  using  the  monthly 
values of any  sunspot-activity  index,  then  we  obtain a curve  which is far 
from  smooth  and  which  contains  many  secondary  maxima of different  in- 
tensities.  These  deviations  from  the  average  cyclic  curve,  the  latter  being 
smoothed  according to some  formula,  are usually  called  fluctuations  in  the 
solar  activity. 

The  basic  feature of these  fluctuations is that  they  outline  quite  clearly 
the  80-year  to  90-year  cycle  (Balli,   1955).  The  fact  that  the  secondary 
maxima and minima of the Wolf numbers  and  spot areas coincide  in  phase 
for  11-year  cycles  with  rising  parts of the  curve  which are approximately 
equal  in  length is considered  ta  be  an  indirect  proof of this  correlation 
(Xanthakis,  1957;  Xanthakis,  1959).  The  fluctuations of the  relative  spot 
numbers  show  no  periodicity  within  the  11  -year  cycles  and s o  can  essentially 
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be  considered as independent  processes  (Vitinskii,  1961b).  The  properties 
of the  solar  fluctuations  (their  amplitude  and  duration  only,  their  interisity 
being  disregarded  here)  do  not  show  essential  differences  over  the  rising 
and  descending  parts of the  11-year   cycle .   This   a lso  appl ies   to   the  spot  
areas, s ince a very  close  correlation  exists  between  the Wolf numbers  and 
the  sunspot areas. 

Strong  fluctuations  in  solar  activity are the  most   important   for   fore-  
casting  purposes,   since  they  consti tute  the  main  source of e r r o r s  in  prac- 
tically all empiricostatist ical   methods  for  the  forecasting of solar   indexes.  
Strong  fluctuations  are  here  understood  to  mean  deviations  from  the  mean 
cyclic  curve  which are in  excess of one  standard  deviation. An analysis  of 
the  data  listed  in  the  catalog of strong  fluctuations  for  the  years  1755-1954 
(Vitinskii,  1960b, 1960~)  leads  to  the  following  conclusions.  

1. Practically all the  cycles  show  strong  fluctuations  in Wolf numbers 
during  the  f irst   year  prior  to  the  epoch of maximum of the  solar  cycle  and 
during  the  three  years  after  this  epoch. An analogous  conclusion  was 
reached by Bezrukova (19581, as a resul t  of an  analysis of spot areas in 
the  northern  and  southern  solar  hemispheres.  

2. The  higher  the  intensity of the  11-year  solar  cycle,   the  lower  will   be 
the  density of the  strong  fluctuations  (the fewer fluctuations  will  be  observed 
p e r  annum  in  the  rising  part of the  curve).  Low-level  cycles,  conversely, 
have a quite  high  density of fluctuations  during  their rise periods.  

3 .  There is a fairly  sharp  distinction  between  the  properties of the 
strong  fluctuations  during  the  rising  and  descending  parts of the  11-year 
cycle.  During  the  period of rise, the  density of strong  fluctuations is 
primarily  determined by the  duration of the rise, whereas  during  the 
period of descent  i t  is determined both by the  duration of the  descent  and 
by  the  maximum Wolf number.  

Incidentally,  attempts  which  have  been  made  to  determine  the  yearly 
variation of Wolf numbers (see, for  example,  Vsekhsvyatskii,  1950)  can 
hardly  be  considered  successful.  Loewe  and  Radok  (1959)  have  shown  that 
the  yearly  wave of monthly  relative  spot  numbers is not  stable  and  should 
rather   be  considered as one of the  random  fluctuations  in a strictly  auto- 
correlated  t ime series. 

southern  solar   hemispheres  w a s  made by Bezrukova  (1958).  Her  results 
indicate  that  the  maximum area fluctuation  in a single-maximum  cycle 
occurs  at  the  16th  fluctuation,  where  the  fluctuations are numbered  from 
the  beginning of the  11-year  cycle  regardless of their  intensity.  The  maxi- 
mum  fluctuations of deformed  cycles   are  on  the  average  the  5th,  8th,  and 
11th  fluctuations  in  the rise period  and  the  15th,  19th,  22nd,  and  29th  in 
the  descent  period.  Thus,  in  this case a gap of 3 o r  4 fluctuations is ob- 
served  between  successive  high  fluctuations.  The  highest  fluctuations  in 
a deformed  cycle are the  9th  and  24th. 

A detailed  study of the  fluctuations of sunspot areas in  the  northern  and 

S 11.  Some  Remarks  Concerning  Long-Duration 
Solar  Cycles 

Although  the  reliable  data  which are available  at  present  on  the Wolf 
numbers  cover  over  nineteen  11-year  sunspot  cycles,   these are s t i l l  

32 



insufficient  for  reaching  any  definite  conclusions  concerning  the  possible 
existence of long-duration  solar  cycles.  It is true  that   the  table of Schove 
(1955)  contains  qualitative  data  on  sunspot  activity  which  goes  back  to  the 
year  649 B. C., obtained  from  descriptions of the  polar  auroras,   but  these 
data  can  only  with a certain  reservation  be  uti l ized  for  estimating  long- 
period  solar-activity  cycles. 

However,  some  quantitative  estimates  can  be  made  without  using  Schove's 
data.  Gleissberg  (1944a),  in  an  analysis of the  ra t io  Q of the  lengths of the 
rising  and  descending  parts of the  11-year  cycle,   observed a systematic   de-  
crease in  this  parameter  during  the  years  between  1615  and 1937.  Conse- 
quently,  he  concluded  that  there  may  exist a sunspot  cycle  with a duration 
of some  thousand  years.  Rubashev  (1949)  discovered a 600-year  cycle  on 
the  basis of the  variation  in  the  number of comets  which w e r e  visible  to  the 
naked  eye,  and  finally  Maksimov  (1953)  established  the  existence of a cycle 
of like  duration  from  the  variation  in  the  thickness of tree rings.  

If we now consider  the  data  in  Schove's  table,   we see that at the end of 
the  17th  century  solar  activity  reached  an  all-time low €or  the  period of 
telescopic  solar  observations,   whereas a cycle  comparable  in  intensity  to 
the  present  cycle  last  occurred  from  1368  to  1378  (about  600  years  ago). 
Therefore ,   there  is some  indication  that a solar-activity  cycle  about  600 
years  in  length  exists. 

duration of the  80-year  to  90-year  cycle  with  any  real  accuracy,  and  that 
this  duration is apparently  subject  to  very  strong  fluctuations,  For  ex- 
ample,  Schove's  table  indicates  that  this  cycle  can  be  anywhere  from  five 
to  eleven  11-year  cycles  in  length. Of course,   these  results  only  represent 
es t imates ,  but  they  suffice  to  show  that  cycles  with  durations of fifteen 
(Anderson,  1954;  DjurcoviE,  1956) or  sixteen  (Bonov,  1957)  11-year 
cycles are extremely  unlikely.  Actually,  for  the first case to  be  true,  two 
adjacent  secular  cycles would  have  to  have  durations of seven and  eight 11- 
year   cycles ,   whereas   in   the  la t ter   case  the  adjacent   cycles  would  both  be 
eight  11-year  cycles  in  duration.  It is significant  that  in  his  most  recent 
ar t ic le  Bonov  (1961) refers only  to a long  sunspot  cycle,  without  mention- 
ing  its  duration  explicitly.  Therefore,  the  problem of long-duration  solar- 
activity  cycles  has s o  far only  been  posed,  and  we are   s t i l l   very  far f r o m  
a solution. 

It  was  mentioned  previously  that so far we  cannot  hope  to  determine  the 

§ 12.  Concluding  Remarks 

In  conclusion  let us s t ress   once  more  that   in   the  present   chapter  w e  
have  not  attempted  to  give a detailed  representation of all  the  fundamental 
properties of solar  activity.  Rather  we  have  only  discussed  certain  prob- 
lems which  have a direct  bearing  on  the  forecasting of sunspot-activity 
indexes. 

chromosphere  and  corona.  Moreover,  for  the same reason,   some  very 
basic  problems of sunspot  activity  have  been  disregarded  entirely,  whereas 
certain  phenomena  which,  though of secondary  significance  for  the  overall 
study of solar  activity, are nevertheless  important  with  respect  to  solar 
forecasting  have  been  considered  in  great  detail.  

In  relation  to  this,  w e  have  not  been  concerned  with  solar  activity  in  the 
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Chapter I1 

SOLAR-ACTIVITY  FORECASTS A YEAR OR 
SEVERAL YEARS IN ADVANCE 

§ 1. Introductory  Remarks 

In  this  chapter we  will  consider  basic  methods  for  the  long-range  fore- 
casting of Wolf numbers a y e a r  or several   years  in  advance,  within  the 
l imits  of the  current   cycle .   These  methods are the most reliable of a l l   the  
empiricostatist ical   forecasting  methods  available  at   present.   In  addition, 
they are quite  accurate,  mostly  due  to  the  diversity of the  methods,  the 
e r r o r s  of which  mutually  compensate  one  another. 

As  observed  previously,  the  ascending  and  descending  parts of the 1 1 -  
year  sunspot  cycle  have  essentially  different  characterist ics,  so that  it is 
advisable  to  consider  separately  methods  for  forecasting  the Wolf numbers 
for the  two  branches.  It  should  also  be  noted  that  some  authors  compute, 
instead of the  yearly  value,  the  smoothed  monthly Wolf numbers  for  the 
corresponding  separate   epochs of the  cycle. Thus ,  in  each  individual case 
it  will  be  specified  which  relative  spot  numbers are actually  being  considered. 

The  "eruption"  hypothesis of Waldmeier (1935) has  had  special  signifi- 
cance  for  the  development of methods  for  forecasting Wolf numbers  within 
the  current  cycle.  Before  the  advent of this  hypothesis,   investigators  were 
mainly  concerned  with  studying  real,  but  more  often  imaginary,  periodici- 
t ies   in   solar   act ivi ty   in   such a way that a great  number of mostly  unsuc- 
cessful  ultralong-range  forecasts  resulted.  The  "eruption"  hypothesis, 
however,   forced  researchers  to  concentrate  exclusively on  the  basic  inner 
regularit ies of the  11-year  cycle.   The  principal  results of these  studies 
were  discussed  in  Chapter I ,   so that  it  will  not  be  necessary  to  repeat  them 
here.  It should  be  noted,  though,  that  the  forecasts  obtained on the  basis  of 
these  methods  have  been  the  most  trustworthy.  Since  Waldmeier  was  the 
f i rs t   to   offer  a successful  forecast  of the Wolf numbers   for   the  current  
cycle,  let  us  begin  by  discussing  his  method. 

§ 2. Waldmeier's  Method 

Waldmeier's  method  for  forecasting  solar  activity  within  the  current 
cycle i s  based on relations (1.1) through (1.6). The  first   two of these 
formulas  can  be  replaced  quite  accurately by the  single  formula 
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from  which  we  obtain 
T = 18.4 - 7.i4 log W, (2.2) 

Here,  wu is the  smoothed  monthly maximum Wolf number  and Tis the 
duration of the  r ising  part  of the  cycle,   in  years.  

of the  11-year  solar  cycle,   namely  the rate of its development 
It  will  be  convenient  to  introduce  another  very  important  characteristic 

V =  w,--w, 
T '  (2.3 

where W, is the  minimum  smoothed  monthly Wolf number.   From (2.2), 
we  have 

V =  wN- w m  
12 (18.4 - 7.14 log Wx) * (2.4 

If this   parameter  is determined at the  beginning of the  cycle,  then it can  
be  used  to  forecast  wu. 
epoch of maximum of the  17th  sunspot  cycle,  and  it  was  found  to  be  excep- 
tionally  dependable,  especially  for  that  time  (Waldmeier,  1936).  Wald- 
meier used  the  smoothed  monthly Wolf numbers  for  the  period  from  1933 
to  October  1935  to  obtain  values of 124 for  the  height of maximum  and  1937.7 
for the  epoch of maximum.  The  actual  height of the  maximum of the  17th 
cycle  was  119.2,  while  the  epoch of maximum  was  1937.4. No l e s s   success -  
ful w a s  Waldmeier 's   forecast  for the  18th  solar  cycle  (Waldmeier,  1946): 

This  method  was  first  applied by Waldmeier  to  predict  the  height  and  the 

Epoch of maximum Height 

Observed . . . . . . . . . .  1947.5 151.8 
Forecast . . . . . . . . . .  1947.6 139 

The  above  basic  propositions of Waldmeier's  method are of particular 
significance,  and  thus  deserve  special  attention.  In  practice,  Waldmeier's 
method  also  makes  it   possible  to  predict  the Wolf numbers  for  the  descend- 
ing  part of the  cycle. In order  to  do  this,  an  analog  cycle is selected on the 
basis  of the  data for the  beginning of the  current  cycle,  and  the  descending 
part  of this  analog  cycle is used  to  predict  the Wolf numbers for the  des-  
cending  part of the  current  cycle.  It  should  be  noted,  however,  that  the W 
values  forecast  for  the  descending  branch  using  this  method  were  some- 
what  low. 

01' (1949a)  investigated  the  reliability of Wolf numbers   forecast   for  
the  ascending  and  descending  parts of the  cycle  using  this  method.  He 
plotted  the  mean  cyclic  curves  for  two  groups of cycles,  namely  high  cycles 
with W M  100 and low cycles  with W y  <IO0 (cycle 4 was  not  considered). 
01'  then  computed  the  reliability of the  average  values ( i="5,  "4, . , . , 
0, +l, . . .  ,+7) obtained  in  this  way,  with  an  accuracy of 1070, f rom  the   cor -  
responding Wp(i=O in  the  epoch of maximum). For the  highcycles (WH > 100) 
the  average  reliabil i ty  for  the  ascending  part  of the  cycle w a s  0.51,  while  for 
the  descending  part   i twas 0.76. Consequently,  for  highcycles,  forecasts  can 
be  made  for  the  descending  part  only. For low cycles  (WM-< 100) the   aver -  
age  reliability  for  the  ascending  and  descending  branches  was  0.49  and 0.53 ,  
respectively.  Consequently,  the  average  cyclic  curve  for low cycles  is com- 
pletely  inadequate  for  forecasting.  Thus,  to  summarize,  Wolf-number 
forecasts  for  the  descending  part  of the  curve,  obtained  by  the  analog 
method, are unreliable  even  for  high  cycles. 
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s 3. The  Cyclic-Curve  Method 

Stewart  and  Panofsky  developed  Waldmeier's  analog  method  and  "erup- 
tion"  hypothesis  further  to  formulate a method  based on their  two-par,-- 
e te r   formula  (1.10) 

FV=me". 
Whereas  Waldmeier's  method is actually  based  on a one-parameter  family 
of cyclic  curves,  in  the  method of Stewart  and  Panofsky  constants F, a and b 
are assumed  to  change  from  cycle  to  cycle  (Stewart  and  Panofsky,  1938). 
Using  the  data  for  solar  activity  up  to  1938,  Stewart  and  Eggleston  (1939) 
determined  the  constants  in  equation  (1.10)  for  the  17th  cycle  and  then  pre- 
dicted  the  smoothed  monthly  Wolf  numbers  for  the  descending  part of this 
cycle.  This  forecast is shown as follows,  the  figures  in  parentheses  being 
the  observed  values  for  the  given  months (or, more  precisely,   the   smoothed 
values ) : 

VI1 1939 - 87.2(87.6). VI1 1941 -37.7(47.1), 
I 1940 - 73.5(73.5), I 1942 -28.9(43.8). 

VI1 1940 - 60.3(67.6), VI1 1942 - 21.8  (29.6). 
I 1941- 48,2(56.6). 

These  data  indicate  that   the  cyclic-curve  method  gives  values  for  the 
relative  spot  numbers on the  descending  curve  which  are  too  low.  More- 
over,  the  three  parameters  cannot  be  determined  unless a quite  consider- 
able  portion of the  cyclic  curve is available, a factor  which  l imits  the  fore- 
cast   severely.  

In  addition  the  cyclic-curve  method  was  subsequently  employed by Cook, 
who  plotted a one-parameter  family of cyclic  curves on  the  assumption  that 
pa rame te r s  b and Fa re  related  to a (Cook,  1949). T h e  pa rame te r  a is best  
determined  from  the  curve  for  the  relation  between a and wy. However, 
Cook's  method  predicts Wolf numbers  with  such a low accuracy  that   i t  is 
hardly  worthwhile  to  use  it   for  forecasting  purposes. 

Finally,  Chvojkova  (1952)  has  approximated  the  11-year  cyclic  curves 
using  the  expression 

Here,  t is the  time  from  the  beginning of the  cycle, T i s  the  duration of the 

cycle,  and a= , where T ,  is the  time  from  the  beginning of the  cycle 

to  the  epoch of maximum  (that is, the  length of the  r ising  part  of the  curve).  
This  equation  can  also  be  used  to  predict  the Wolf numbers on  the  descend- 
ing  part  of the  cyclic  curve.  The  parameters w,, a and T can  be  selected 
according  to  the  r ising  part  of the  given  cycle.  It  should  be  observed,  how- 
ever,  that  Chvojkova's  formula is in no way  superior  to  the  Stewart-Panofsky 
formula.   The Wolf numbers  obtained  using  this  formula are a l s o  too low, 
and  the  results  apply  to a very  restricted  portion of the  cyclic  curve. 

Consequently,  the  cyclic-curve  method  does  not  ensure  an  adequate re- 
liability  for  forecasts of values on the  descending  branch. In addition,  its 
applicability is highly  restricted, so  that  it is only of historical  significance 
with  respect  to  forecasts of Wolf numbers  for  the  current  cycle.   Later,  
however, w e  will  show  that  this  method is useful  to  some  extent  in  ultralong- 
range  forecasts .  

1 - T, /T  
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§ 4. Gleissberg's  Method 

Waldmeier's  method  and  the  cyclic-curve  method are both  based  on  the 
assumption  that   the  11-year  solar  cycles are entirely  independent of one 
another.   Gleissberg (1939),  on the  other  hand,  carried  out  certain  studies 
which  indicated  that  successive  cycles are mutually  dependent  and  show a 
long-period  variation  pattern.  Consequently,  Gleissberg's  method  for  fore- 
casting  the Wolf numbers  is only  partly a method  for  predicting  the Wolf 
numbers   for   the  current   cycle .   I t   might   be  c lass i f ied  more  appropriately 
as a method  for  ultralong-range  forecasting.  Therefore,  here  only  Gleiss- 
be rg ' s   a r t i c l e  (19401, in  which  he first gave a forecast   for  the  descending 
par t  of the  17th  sunspot  cycle,   willbeconsidered.  The  details  of the  method 
will   be  discussed  in  Chapter IV. 

Since  the  epoch of minimum of the  solar  cycle  cannot  be  pinpointed  due  to 
the  overlapping of two  successive  cycles,  therefore  Gleissberg  introduced a 
reduced  length t ,  for  the  r ising  part  of the  cycle  and a reduced  length t f  for  
the  falling  part,  these  being  determined as follows. If W, is the  highest 
smoothed  monthly Wolf number  in  the  cycle, tu is the  month of occurrence 
of this  maximum  number,  and I, and t ,  are the  months  in  the  rising  and  de- 
scending  par ts  of the  cycle,  respectively,  in  which  the  smoothed  monthly 
Wolf numbers are equal  to ,W,, then t, and t j  are defined as 1 

t ,  = t ,  - t,  and t ,  = t, - t ,  (2.6) 

Using  the  Zurich  data,  Gleissberg  determined W,, t,, and t j   f o r   c y c l e s  
0 through 17. Then,  he took the  average of four  successive  11-year  cycles 
to  obtain  the  quantities WF, tP), and I:"). Table 9, in  which  these  values are 
listed,  shows  that  the  long-period  variation of W$ is accompanied by analog- 
ous variations of tp) and tyl. The  maxima  and  minima of ty)  almost  coincide 
with  the  maxima  and  minima of W$), whereas  the  maxima of t$41 correspond 
to  the  minima of W$and  vice versa. Moreover ,   the   sum tL4)+ty), which is 
given  in  the  last  column of Table 9, remains  practically  constant.  It is im- 
portant  to  note  that  the  data  in  the  last  five  columns of the  table refer to  
cycles  0-3,  1-4 ,..., 14-17,  15-18,  16-19,  respectively. 

The figures in  the  last  column of Table 9 show  that  the  sum t>4)+tj(4) a l -  
ways  lies  somewhere  between  84  and 92. Gleissberg  thus  assumed  that   for 
cycles  14- 1 7  this   sum would  not  be less  than  84.  Consequently,  since  the 
corresponding  t,(')was 3 3 ,  the  next  value of tj(4)should  not  have  been less   than  
51. This  quantity,  then,  represents  the  average of tyfor  cycles  14  through 
17. Also,  the  sum of these  four  numbers  should  at   any  rate  not  be less than 
203,  and  since  the  sum of the  three  numbers  (for  cycles  14,   15,  and  16)  in 
column 5 of Table 9 is 140,  therefore t,for the  17th  cycle  should  not  be less 

than  63  months.  In  the  17th  cycle, w ~ =  119.2,  that  is, WM=30. Therefore,  

the  smoothed  monthly Wolf number  should  drop to 30  no ear l ier   than 63 
months after the  epoch of maximum  (April  1937),  that is, not  before  the 
second  half of 1942.  Actually,  the  smoothed  monthly  relative  spot  number 
first  dropped  below  30  in  July 1942. Therefore,   this  f irst   application of 
Gleissberg's  method  was  here  completely  successful  and  even  represented 
some  progress  in  comparison  with  Waldmeier 's   forecast .  

i 
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number 
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3 
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8 
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19 

T A B L E  9. 

Principal  characteristics of 11-year sunspot cycles  (according IO Gleissberg) 
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115.8 
158.5 
141.2 
49.2 
48. 7 
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64.2 

105.4 
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45 
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52 
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52 
29 
17 
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35 
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24 
34 
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26 
47 
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35 
32 
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23 
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- 
?, 
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41 
48 
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48 
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27 
54 
35 
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68 
IO 
51 
34 
5 1  
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46 
40 
63 
58 
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w(4) M 

113.4 
125.5 
116.2 

99.4 
71. 7 
79.1 
99. I 
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111.2 
100.2 
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59 
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44 
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43 
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31 
33 
34 
43 
42 
36 
35 
29 
34 
35 
36 
38 
37 
33 
30 
29 

49 
59 
54 
53 
49 
42 
52 
56 
60 
56 
53 
49 
48 
49 
51 
52 
- 

- 
90 
87 
87  
92 
84 
88 
91 
89 
90 
88 
85 
86 
86 
8 1  
82 
- 

Table 9 also  gives  the  data for cycles  18 and 19, taken  from  later  work of Gleissberg  (Gleiuberg, 1953). 
In addition,  the  values of tt and t l W ,  which  will  be  defined in Chapter 4, are  also  given  here. 

5. The  Latitude  Method 

A s  mentioned  previously (see Chapter I, S 4), the  Wolf numbers  in  the 
descending  part of the  11  -year   solar   cycle   are   completely  determined by 
the  heliographic  latitude,  this  dependence  being  the  same  for all cycles .  
This   regular i ty  is most  reliably  observed  for  latitudes of < 14". The 
latitude  method is based  on  this  dependence,  which w a s  established  by 
Gnevyshev  and  Gnevysheva  (1949).  The  form of the  relation  between  the 
corresponding cp and t for  the  descending  part of the  sunspot  cycle  was 
shown  above  in  Figure 4 .  

Let u s  now use  the  curve  in  Figure 4 and  the  yearly  average  latitudes 
for   the  r is ing  par t  of the  given  11-year  solar  cycle  to  forecast   the  yearly 
Wolf numbers  for  the  descending  part  of the same cycle .   In   order   to   do 
this,  w e  will  plot  the  latitudes  for  the  rising  part  and  the  beginning of the 
descending  part of the   curve  (up to 14") onto  tracing  paper  and  then  super- 
impose  the  t racing  paper   onto  the  mean cp=cp(f) curve  in  Figure 4 in such a 
way  that  the  points  on  the  tracing  paper  fit  the  curve  best  (the  tracing  paper 
is moved  along  the  abscissa  axis  to  find  the  best fit).  

tinuation of this  curve  for  the  descending  part of the  given  cycle  and  read 
off the  latitudes rp at one-year   intervals .   These  values  of rp now allow u s  
to  plot  the  relation  between cp and w for  cp < 14" found  by Gnevyshev  and 
Gnevysheva  (see  Figure 8). In this  way  we  obtain  the  yearly  relative  spot 
numbers  for  the  descending  part  of the  11-year  solar  cycle. 

Using  the  mean  curve w e  then  transpose  onto  the  tracing  paper  the  con- 
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Using  the  latitude  method,  01'  (1954)  computed  the  yearly Wolf numbers  
for  the  descending  parts of cycles  10  through 18. The  [overall]  standard 
deviation of the  values  obtained w a s  11.8. 

the  yearly  relative  sunspot  numbers  for  the  descending  part  of the  18th 
cycle: 

As an  example of a forecast   based on the  latitude  method,  let us predict 

1949 1954  1953  1952  1951 1950 

7 .  . . . . . . . . . 
W' . . . , . . . . . T 9  8 6  9 5  la7 11:9 133 

4 13 31 69 84 135 wok . . . , . . . . . 
10 17 27 43 61 86 

A comparison of the  observed  numbers Webs with  the  forecast   numbers w 
indicates  that  the  high  values of Wok in  the  middle of the  descending  branch 
(1949-1951) w e r e  not foreseen,  For  the  subsequent  years,   however,   there 
is a satisfactory  agreement  between w b s  and w. 

W 

FIGURE 8 

Just  as in  the case of Waldmeier's  method,  the  main  advantage of the- 
latitude  method is i ts   s implici ty .  If it is also  kept  in  mind  that   i ts   reli-  
ability is higher  than  that of the  analog  method,  then  this  method  recom- 
mends  itself as one of the  working  methods for predicting  the  descending 
par t  of the  cycle.  Unfortunately,  however,  its  range is very  res t r ic ted 
(it is applicable  for q < iboonly).  Moreover,  the  latitude  method  does 
not take  into  account  fluctuations  in  the  yearly Wolf numbers  (and in  the 
latitudes), a fact  which is evident  from  the  following  forecast  for  the  19th 
cycle.  The  following  yearly Wolf numbers  were  obtained  for  the  descend- 
ing  part  of the  current  (19th)  cycle:  1961-64(51),  1962-52,  1963-34, 
1964-28,  1965-13. 

16.  Kozik's  Method 

Kozik's  method is based on the   use of a new  sunspot-activity  index 
K=iOdK which  was  first  introduced by Omshanskii  (according  to 
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Kozik,  1949).  While  applyin  this  index  in  order  to  simplify  the  11-year 
sunspot-cycle  curve,  Kozik f 1946)  discovered  the  following  advantages of 
the  index  over  the Wolf numbers:  

1)  the  use of the  index K levels off the  fluctuation  amplitudes  for  different 
phases of the  11-year  solar  cycle;  

2) the   sca t te r  of heights of the  minima  and  maxima of the  11  -year  cycles 
is of the same o r d e r  of magnitude  for  the  index K; 

3 )  the  correlations  with  certain  geophysical  indexes  become  more 
simple  and  linear  when  the  index K is used. 

The  cyclic  curves  for  the  index K constructed  by  Kozik  (1949)  illustrate 
the  four  fundamental  points  characterizing  an  11  -year  cycle,  namely,  the 
beginning of the  cycle,   the  f irst   break  point,   the  second  break  point,   and  the 
end of the  cycle. If al l   the 11 -year  solar  cycles  are  divided  into  three 
groups  according  to  intensity,  namely  strong (W, > IiO), average 
(80 < W, < i i O ) ,  and  weak ( w ~  < 80), then  we  find  that  in  strong  and  aver- 
age  cycles  the  second  break  point  coincides  with  the  epoch of sunspot   maxi-  
mum.  For  low  cycles  the  second  break  point is either  located  on  the  same 
level as the  First  break  point o r  else  even  lies  below  it.  UnFortunately,  the 
f i r s t  and  second  break  points  can  be  determined  only  with low reliabil i ty,  
and  this  naturally  affects  the  reliability of forecasts   for  low so lar   cyc les .  

t 3  
FIGURE 9 

The  general   form of Kozik’s  cyclic  curve is shown  in  Figure 9, in  which 
the  following  notation is used:  (1)  and (2 )  are  the  f irst   and  second  break 
points; Kt is the  value of index  Kat  the  second  break  point;  and f, is the 
time  from  the  second  break  point  to  the  point  where K =  0. 

r is ing  par ts  of the  11-year  cycle,  we  will  consider  here  only  his  results 
for  the  descending  part. 

The  initial  assumption is that  during  the  descending  part of the  cycle 
the  index K i s  a linear  function of t ime.   Moreover ,   the   ra te  of dec rease  
of Kin  the  descending  part  is apparently  independent of the  height of the 
given  cycle  and  averages  11  to 13 per  annum.  From  an  analysis  of 17 
cycles  (cycles 3 and 4 in  the  Zurich  enumeration  were  excluded),  Kozik 
found  that 

ts= O.OSK, (a = k0.59 y r  ). (2.7 1 

Although  Kozik  derived  relations  describing  both  the  descending  and 

If t is the  time  reckoned  from  the  second  break  point,  then  from  Figure 9 
it  is  evident  that 

”=¶ K 
t s - t - < ’  or  K=K, -? t .  
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Now, from  equation (2.7) we  find  that 

K = Kt- 1 2 3 ,  (2 .8 )  

and,  since K=iOiw, formula (2.8) gives  the  yearly  values. 

were  derived  from  the  monthly  values of W, therefore K should  be  computed 
for  the  middle  of  each  year  and  then,  after  converting  from. K to  unity 
should  be  added  to  the  result  to  obtain  the  yearly Wolf numbers .  

Kozik  predicted  the  following  yearly Wolf numbers  for  the  descending 
pa r t  of the  18th  sunspot  cycle: 

We  should  also  note  the  following  factor.  Since  the  preceding  formulas 

1948  1956  1955  1954  1953  1952  1951  1950  1949 

R . . . . . .  
4 13  31 69 84 135  136 webs . . . . . .  

4" 9p 18 30 45 63 84 109 W . . . . . .  
4 16 29 41 54 66 79 91 104 

The last   row  gives  the  observed Wolf numbers Webs. Asterisks  indicate 
the  numbers  which  are low according  to  Kozik;  the  table  shows  that  Kozik's 
method  mostly  results  in  relative  yearly  spot  numbers  which are too  low. 

According  to 0 1 '  (1954),  back  calculations of the  yearly Wolf numbers 
for the  descending  parts of solar  cycles 0 through  18  (Zurich  system)  ac- 
cording to Kozik's  method  have  an  overall  standard  deviation of 10.8.  It 
is typical  that  the  highest  standard  deviations  are  observed  for  cycles 
whose  descending  parts  have  sharp  fluctuations  (cycles 9 and  18).  and  also 
for  cycles  for  which  Kozik's  relation  between K2 and t3 is not Val.'? (cycles 
3 and 4) .  

The  main  advantage of Kozik's  method is its  simplicity.  The m, p d i s -  
advantages are that  it  does  not  take  into  account  the  possibility of flubtuations 
of Wolf numbers and  that  the  determination of the  second  break  points  for low 
solar   cycles  is difficult. 

§ 7. The  Regression Method 

A s  mentioned  in § 1 of this  chapter,  0 1 '  (1949a)  investigated  the  reli- 
ability of Wolf-number  forecasts  according to Waldmeier's  method.  To 
do  this,  01'  used  the  cyclic  curve  for  high  cycles (WM > 100) to  obtain  the 
following  forecast  for  the  yearly Wolf numbers  in  the  descending  part of 
the  18th  sunspot  cycle  (the  actually  observed  numbers are given  in  paren- 
theses):  

1948-"26(136). 1951-50(69). 
1949-lOl(135). 1952-32(31), 
1950-  76(84), 1953-14(13). 

These  data  indicate  that  the  reliability of this   forecast  is no lower  (especially 
after  1950),  and  in  some  cases is even  higher,  than  that of Kozik's  foreeast. 

A further  refinement of this  method is the  regression  method  developed 
by 01'  in  1954  (Ol',  1954).  The  regression  method is based  on  the  fact  that 
within a given  cycle  each  successive  sunspot  number  can  be  correlated  with 
the  preceding  one. If w, is the  yearly  number  for a given  year  and Wi+k is the 
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yearly  number  after k years,   then 

W'ik = U P ;  + hl (2.9) 

where ak and bk are constants  determined  from  an  analysis of the  re la t ive 
Wolf numbers  for  the 19  known solar  cycles  (cycles 0 through 18 in  the 
Zurich  system).  Naturally,  only  correlations  for  which  the  correlation 
coefficient  was r(Wd, W,,)>O.M were  suitable  for  forecasting  purposes.  

In contrast   to  the  previous  methods,   the  regression  method  makes  i t  
possible  to  predict Wolf numbers not  only  for  the  descending  part of the 
given  cycle but also  for  the  r ising  part   as  well .   This is very  significant, 
since  this  method  can  thus  be  used  at  the  very  beginning of the  cycle  to 
estimate  the  development of the  current  cycle. 

the  maximum  and  minimum  relative  sunspot  numbers;WN+r  andWmMare  the 
Wolf numbers k years  after  the  corresponding  epochs of extremum,  where 
for  the  descending  part k=1,2, ..., 7and  for  the  r ising  part  k=l,2,3. 

The  following  relations  hold  true  for  the  descending  part of the  solar 

Let u s  now introduce  the  following  notation: W, and W, are,   respectively,  

cycle : 
W,, = O.87Wx - 4 
W, = 0.76WM- 8 
W,, = 0.62WN--  15 
WHd=0.41WN- 7 
w, = o.wwx+, - 8 
W, = 0.72Wx+l - 12 
W, 0.50WN+, - 8 
w,= 0.41 w,, - 12 

W, - - 0.22w, - 7 
W, = 0.75 W,+, - 3 
WMd = 0.53W,,,, - 2 
W, = 0.33W,,+, 
W ,  = 0.31WH+, - 9 
W , ,  = 0.76WMe - 3 
W,,, = 0.58W- - 6 
W,, = 0.48WMa - 12 
W,,+, = 0.44Wm - 13 
W,,, = 0.76WM+, - 3 
w,,, = 0.68WN* - 7 
W,,, = 0.52W- - i 1 
W,, = 0.69W, - 4 
w,, = 0.64w,, - 7 
W,,, = 0.85WNM - 3 

r = 0.95 
r = O M  
r = 0.88 
r = 0.74 
r = 0.93 
r = 0.93 
r = 0.81 
r = 0.78 
r = 0.60 
r = 0.94 
r = 0.84 
r = 0.66 
r = 0.68 
r = 0.92 
r = 0.86 
r = 0.82 
r = 0.76 
r = 0.89 
r = 0.8f 
r=0.66 
r = 0.91 
r = 0.83 
r = 0.93 

a = f 10.3 

a = k9.2  

a= k7.5 

a =  f7.1 

a= f7 .8 

a= k3.5 

o = k4.1 

(2.10) 

Here,   the  correlation  coefficients r a r e  given  in  each  case,  and  the  stand- 
ard  deviations a of the  predicted Wolf numbers  for  cycles 0 through 18 a r e  
indicated  for  the  cases  with  the  highest  correlation  coefficients.  The  over- 
all standard  deviation  for  this  set of War+r values is 7.8. It  should  be 
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noted  that  the  analysis  which  01'  made of the  applications of this  method 
r e f e r s  to the  most  favorable  conditions,   in  which  the  values  are  predicted 
from  year  to  year  ( in  contrast   to  the  lat i tude  method and  Kozik's  method). 
Naturally, if  the  forecast  is made a longer  time  in  advance,  especially  for 
the  entire  descending  part of the  cycle ,   the   resul ts   are   much  poorer   s ince 
the  correlation is weaker.  The  regression  method  does  not  apply  to  the 
end portion of the  descending  part of the  cycle (k > 4), since  here   the  cor-  
relation  coefficients  for W, a r e  too  small. 

As a sample  application of this  method,  we now give  the  yearly Wolf 
numbers  forecast  for  the  descending  part of the  19th  sunspot  cycle (ol', 
1960):  1961-84,  1962-58,  1963-36,  1964-20,  1965-10.  The last two 
figures  were  extrapolated on the  basis of the  shape of the  cyclic  curve. 

A s  mentioned  previously,  the  regression  method  also  makes  it   possible 
to  predict  the  yearly  relative  spot  numbers  for  the  rising  part of the  cycle. 
In t e r m s  of the  previous  notation,  the  following  equations  may  be  obtained 
for  the  r ising  branch: 

W,,,,p=1.953Wa+1+i7 r=0.83 
W,+s=1.592W,,l+ 6 r z 0 . 9 7  
W,, = 3.067W&, + 33 r = 0.79 

The  correlation  coefficients  are  indicated  for  each  case.  Here  there w a s  
no point  in  computing W,,, since  for  many  cycles WIM=WI. so that  in 
some  cycles  Wm,, < W-, while  in  others w,,> wae., 
the  following  standard  deviations:  13.8,  11.6, and  26.1.  The  last  regres- 
sion, of course,  is useless  for  forecasting. 

beginning of the  cycle  using  the  following  equations: 

I (2.11) 

Rack  calculations  for  cycles 1 through  18,  using  formulas  (2.11),  gave 

The  maximum Wolf number W, for a given  cycle  can  be  computed  at  the 

W,= I .233 (WI+z - W,) + 49 r = 0.87 
W,= I .622 Fa+, - W,+J + 49 r = 0.87 I (2.12) 

The  correlation  between Wn+l and W, was found  to  be  insufficient.  Back 
calculations for cycles 1 through 18  gave  standard  deviations of 16.7  and 
15.8. If we take  the  average of the  results  obtained  using  these two form-  
ulas,   then we obtain a standard  deviation of 15.3. 

Subsequent  studies  have  shown  that if these  theoretically  obtained  values 
wx are  subtracted  from  the  observed  values w, then  the  difference 
WM-W,=A shows a regular  several-year  variation  (from  cycle  to  cycle).  
In order  to  investigate  the  regularity of this  variation,  sets of four  values 
of A were  smoothed and the  curve  for A(+) w a s  plotted.  This  curve  can  be 
approximpted by the  following  sinusoidal  function of t ime: 

A(4) = -14.5 sin (36: + 7.2). (2.13) 

where t is the  t ime,   expressed as the  dumber of the  given  11-year  sunspot 
cycle  minus 3 (for  example,  for  the  18th  cycle t=  15,  while  for  the  current 
19th  cycle t= 16).  Using  formula  (2.13),  the  values of A(') were  computed 
for  all known past  cycles, and  then  the  values of A were  found using  the 
formula 

A k  = 4 A f L  - ( A H  + A&* + Ak-1). 
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The  correct ions A improved  the  accuracy of the  forecasts ,  so that  the 
standard  deviations  dropped  from  15.3  to 9.5. Let u s  note  that  formula 
(2.13) can  also  be  used to forecast   the  value of A for  the  next  cycle  (for  the 
19th  cycle, A =  36). 

Therefore,   the  regression  method  enables a fairly  accurate  prediction 
of the   r i s ing   par t  of the  cyclic  curve,  but  the  range of the  forecast  is lower 
than  that  for  the  descending  part.  In  practice,  the  rising  part  can  be  pre- 
dicted a year,   and  in  some  cases  two  years,   in  advance. 

To il lustrate  the  reliabil i ty of a forecast   made  for  the  r ising  part  of the 
curve  using  the  regression  method, let us  give  the  results  obtained  for  the 
r is ing  par t  of the  19th  sunspot  cycle.  It  should  be  noted  that  according  to 
various  authors  the  maximum of the  19th  sunspot  cycle w a s  expected 
in  1957. If 1954 is taken as the  epoch of minimum,  then  we  obtain 
91  (147)  for  1956  and ZOO(190) for  1957. A comparison  with  the  ob- 
served  values  (given  in  parentheses)  shows  that  the  accuracy of this 
forecast  is satisfactory.  

Finally,  let  us  mention  that  the  regression  method,  when  used  to 
forecast  values  from  year  to  year,  takes  the  Wolf-number  fluctuations 
into  account,  but  that  it  "overcompensates, " since  after  the  fluctuation 
the Wolf numbers  predicted by this  method are generally  too  high. 

§ 8. MacNish's  Method 

MacNish's  method  MacNish  and  Lincoln,  1949),  which is closely re-  
lated  to  the  regression  method, is based  on  the  following  assumptions: 

1)   in  a cyclic  t ime series (for  example,  the series of Wolf numbers) ,  
any  future  value  can  be  estimated,  to a first   approximation, as the  average 
of all   the  past   values of W for   the same phase of the  sunspot  cycle; 

the   ear l ie r   va lues  of W i n  the same cycle  show  with  respect  to  the  corres- 
ponding  averages. 

W e  then  have 

2)  this   es t imate  should  be  corrected  in  proportion  to  the  deviations  which 

Wi =Wn + 'Wi = Wn + k1.n A W ~ - . ~  + ks n ~ ~ , - s  + * . - v 

where n is the  number of years  after  the  beginning  of  the  cycle, W; is the 
forecast  value of Wfor  the  nth  phase of the  cycle, w,, is the  average of a l l  
thew,   for   ear l ie r   cyc les ,  Awn-1. Awn,, . . . are the  differences  between  the 
observed (w) and  average (m) values  for  the  phases of the same cycle  which 
precede  the  nth  phase,  and k,,,, k,n, ... are forecasting  coefficients  de- 
termined by the  least-squares  method. 

may  be  predicted  using  the  simpler  formula 
In  practice  only  the  coefficient k1,". is enough, so  that  the  Wolf  numbers 

(2.14) 

MacNish  obtained  the  following  values of kl," for   the   years   a f te r   the  
epoch of minimum of the  11  -year  cycle: 

1 

1.2 

6 1 :5 1 0.7 

7 

0.4 

8 

1.1 

9 1 0.8 

10 1 0.7 

11 1 0.3 

It 
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It  should  be  noted  that  MacNish  used  smoothed  yearly  relative  sunspot 
numbers  in  his  calculations. 

the  coefficients k,,, for  the  unsmoothed  yearly Wolf numbers.  A cer ta in  
simplification  was  achieved  in  the  following  way.  Instead of using  the 
least-squares  method,  the  average  ratios 

In   o rder  to apply  MacNish's  method  in  practice,  01'  (1954)  computed 

werecomputed.  Then,  a  smooth  curve w a s  drawn  through  the  values  ob- 
tained  for kl,n, and  the  following  values of k,. were  read  from  this  curve: 

Back  calculations of W'for  the  years 1934 through 1943 made  by  01'  gave a 
standard  deviation of 7.8 for the  yearly Wolf numbers.  It is clear  that  
MacNish's  method is essentially  just  a  simplified  analytical  expression of 
the  regression  method. 

Waldmeier  (1946)  derived  forecasting  formulas  for  the  smoothed  monthly 
relative  spot  numbers. If W, is the  maximum  smoothed  monthly Wolf num- 
be r  and W,, is  the  smoothed Wolf number k years  from  the  maximum, 
then  Waldmeier's  formulas  have  the  form 

W,, = -0.225WM+ 51 .O. 
W , =  -0.072Wn+ 26.0, 
WM+= 0.823Wx- 1.4. 

W,,, = 0.686WM- 4.8, 
W,,= O.553Wx- 10.9, 
Wm+= O.380WR- 5.2, 
W,= 0.301WR- 7.4. 

(2.15) 

In § 2 of this  chapter  Waldmeier's  method w a s  discussed,  so  that  there 
is no reason  to  repeat  his  basic  assumptions  here.  Waldmeier's  formulas 
(2.15) are   external ly   very  s imilar   to   those of MacNish's  method and e s -  
pecially  to  those of the  regression  method.  However,  the  essential  differ- 
ence of Waldmeier's  method is that  in  it  all  the Wolf numbers   a re   expressed  
in   t e rms  of W ,  with  the  result   that   the  errors  are  mainly  determined by the 
errors   in   predict ing W,. 

Waldmeier  proceeded  from  his  forecast  maximum of wM= 139  and  his 
forecast  epoch of maximum of 1947.6  to  predict  the  following  smoothed 
monthly Wolf numbers  for  the  18th  solar  cycle  (the  observed  values  are 
given  in  parentheses ): 

Wn-l (1946.6) - 89 (93), W, (1950.6) - 66 (84). 
W, (1947.6)-139(152). W,,(1951.6)-48(69), 
W ,  (1948.6) - 113 (136), W ,  (1952.6) - 30 (31), 
W,,, (1949.6) - 91 (135). Wrn* (1953.6) - 17  (13). 
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These data  indicate  that  Waldmeier's  formulas do not make  i t   possible  to 
take  into  account  fluctuations  for  the  descending  part of t h e   l b y e a r   s u n s p o t  
cycle. 

9. A Procedure  for   Forecast ing  Yearly Wolf Numbers  
Within a Given  11-Year  Cycle 

W e  have now discussed  practically  all   the  methods  for  forecasting  the 
yearly (or the  equivalent  smoothed  monthly) Wolf numbers  within a given 
11  -year  cycle.   These  methods are based  on  Waldmeier's  "eruption"  hypo- 
thesis,  with  the  exception,  to  some  extent,  of  Gleissberg's  method.  Mayot's 
method  (1947,  1951)  has  not  been  discussed,  mainly  due  to  the  very low ac- 
curacy of this  method  and  due  to  the  fact  that  it is essent ia l ly   s imilar   to   the 
other  methods, so that  it is of no real   use  in  forecasting.  Moreover,  
Mayot's  method  will  be  discussed  in  the  next  chapter  in  connection  with 
medium-period  forecasts,   in  which  case  i t   f inds  successful  application. 

In  an  evaluation of the  practical  application of forecast ing  methods,   f i rs t  
all  their  advantages  and  shortcomings  should  be  examined,  then  any  methods 
which  give  very low accuracy or which are  unsuitable  for  the  given  specific 
problem  should  be  rejected,  and  finally  it   should  be  determined  whether  the 
e r r o r s  of different  methods  compensate  one  another. 

Since w e  are only  concerned  here  with  yearly  relative  spot  numbers,  the 
methods of Waldmeier and Gleissberg are unsuitable  for  our  purposes. 
Moreover,  MacNish's  method  in  its  original  form is also  unsuitable,  and 
01's  modification  of  this  method  has no real   advantage  over  the  regression 
method.  Therefore,  the  following  forecasting  methods  remain:  1)  the 
cyclic-curve  method, 2 )  the  latitude  method  (Gnevyshev), 3 )  Kozik's  method, 
and  4)  the  regression  method. 

one  hand,  and  gives a very low forecast  accuracy,  on  the  other.  Since  the 
latter  disadvantage  naturally  does  not  compensate  for  the  former,   the a p -  
plication of this  method  for  forecasting  seems  to u s  to  be  inadvisable. 

On  the  other  hand,  the  first  two  methods  (the  latitude  method  and  Kozik's 
method)  can  be  used  to  predict  the  yearly Wolf numbers  for  the  descending 
part  of the  cycle  only,   whereas  the  regression  method  applies  to  both  the 
descending  and  rising  parts. 

par t  of the  cycle(q<14O),  and  in  this  sense  it  represents  only a kind of 
supplement  to  the  other  methods.  This is particularly  noticeable  for  high 
sunspot  cycles,  while  for low sunspot  cycles  the  latitude  method  applies  over 
a much  wider  range, as was  indicated  in  Chapter I, § 4 .  

pa r t  of a given  cycle.  However,  for low sunspot  cycles  the  accuracies of 
forecasts  made  using  this  method are rather  low,  and  it is most  effective 
for  high  solar  cycles.  

A disadvantage of both  the  latitude  method  and  Kozik's  method is that 
these  methods  do  not  take  into  account  fluctuations  in  solar  activity.  Thus, 
they  both  give Wolf numbers  which are too  low,  particularly  in  the  upper 

The  cyclic  -curve  method is complicated  and  limited  in  application,  on  the 

An advantage  common  to  the  remaining  three  methods is their   simplicity.  

The  latitude  method  pertains  to a very  limited  portion of the  descending 

Kozik's  method  gives Wolf numbers   for   pract ical ly   the  ent i re   descending 
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par t  of the  descending  portion of the  cycle  (the  part  closer  to  the  maximum). 
The  regression  method  gives  the  best  accuracy  for  Wolf-number  predictions 
a year  in  advance.  This  method,  however,  virtually  does  not  apply  to  the 
lower  part  of the  descending  portion of the  cycle  ( the  part   closer  to  the  mini-  
mum).  Contrary  to  the  latitude  method  and  Kozik's  method,  after a s o l a r -  
activity  fluctuation  the  regression  method  generally  gives Wolf numbers 
which are too  high. For forecast ing  several   years   in   advance,   the   regres-  
sion  method is much less accurate .  

Let us  now consider  directly a procedure  for  forecasting  the  yearly Wolf 
numbers  within  an  11-year  solar  cycle.   To  predict   the Wolf numbers   for  
the  r ising  part  of the  cycle,  the  regression  method is generally  used.  It 
should  be  noted  that  here  a  knowledge of at   least   the  approximate  t ime of 
the  epoch of maximum  for  the  given  cycle  (for  example,  gained  with  the 
a id  of Waldmeier's  method) wi l l  be  helpful. 

To  predict  the  relative  spot  numbers  for  the  descending p a r t  of the  cycle,  
it is best   to  use a combination of the  latitude  method,  Kozik's  method,  and  the 
regression  method, and to  take  the  average of the  values of Wobtained  using 
the  different  methods. In practice,  for  high  cycles a combination of Kozik's 
method  and  the  regression  method is generally  used,  while for low cycles a 
combination of the  latitude  and  regression  methods is used.  In  the  case of 
forecasts  for  the  descending  part of the  sunspot  cycle,  the  epoch of minimum 
must  be  known,  and  for  this  ultralong-range  forecasts  are  generally  made 
use of. Consequently,  we  will  return  to  this  problem in Chapter IV. 

The  preceding  methods  make  it  possible  to  forecast  the Wolf numbers  for 
almost  the  entire  11-year  sunspot  cycle.   However,   in  practice,   i t  is equally 
important to  make  high-accuracy  forecasts  one  year  in  advance,  and, as ob- 
served  previously,  the  regression  method is the  most  effective  in  this re- 
spect.  On  the  other  hand,  since  this  method  "overcompensates"  for  fluctua- 
tions  in  solar  activity,  we  should  not  neglect  the  possibility of using  Kozik's 
method, and  in some  cases  the  latitude  method,  to  make  the  prediction  more 
accurate .  

Finally,  still   another  comment  on  the  methods  to  be  used  will  be  apropos. 
Since  quite  considerable  unexpected  jumps  in  the  value of coefficient k of 
formula  (1)  in  the  Introduction  are  sometimes  possible,  even  when  the Wolf 
numbers   are   determined  a t   the   same  s ta t ion by the  same  observer ,  it is very 
desirable  to make  an  annual  comparison  between  the  Zurich  system of r e l -  
ative  spot  numbers and the  system  which  is  used  directly  to  predict  the 
future  course of the  current  cycle.  
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Chapter 111 

MEDIUM-PERIOD FORECASTS OF 
SOLAR  ACTIVITY 

5 1. General  Considerations 

As mentioned  in  the  Introduction,  medium-period  forecasts of so l a r  
activity  here refer to   forecasts  of the  monthly  and  quarterly  solar  indexes. 
The  following  discussion  will  be  limited  to  the  prediction of relative  spot 
numbers.  

From  Tables  I and 111 of the  Appendix  we  see  that  the  quarterly,  and 
especially  the  monthly, Wolf numbers  fluctuate a great  deal.   Because of 
this,  the  prediction of these  numbers  is quite  difficult,  and  when  fluctuat- 
ing  solar  activity is involved  the  forecast  values  usually  have  considerable 
e r r o r .  

In  contrast  to  the  yearly Wolf numbers,   which  can  be  forecast   several  
years  in  advance,  the  monthly  relative  spot  numbers  (provided  smoothed 
va lues   a re  not  taken  into  account)  can  be  obtained,  using  the  methods  avail- 
able so  far ,  no more  than  one  month  in  advance.  The  situation is some-  
what  better for the  quarterly Wolf numbers.  However,  the  errors  involved 
in  all   the  methods of medium-period  forecasting are rather  high, so  that 
these  predictions are less useful  than  those of the  yearly  relative  spot  num- 
be r s .  

Since  several   methods for forecasting  the  quarterly  and  monthly Wolf 
numbers  are  based  on  Mayot's  fundamental  concept, let u s   s t a r t  by d iscuss-  
ing  his  method,  although  actually  this  method  was  originally  developed  for 
the  monthly  relative  spot  numbers  and  should  thus  be  considered  in a s o m e -  
what later context.  It  should  be  noted  that  Mayot  later  extended  his  method 
to   year ly  Wolf numbers as well,  but  the  accuracy of the  method  was  in  this 
ca se  s o  low that  this  application  hardly  deserves  consideration. 

§ 2. Mayot's  Method 

Mayot (1947)  starts from  the  assumption  that  a multiannual series of 
Wolf numbers is representable i n  the  form 

w ( t ) = F ( t ) + E ,  (3.1) 
where F ( f )  is s o m e   s u m  of tr igonometric or  exponential  functions  and E is 
some  random  quantity. 
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The  coefficients alr at. . ., Ui  are determined by the  least-squares  
n 

method,  assuming  that   the  sum is minimized. 
h=t 

Originally  Mayot's  method  was  developed  for  the  smoothed  monthly 
Wolf numbers,  which d i f f e r  from  the  observed  numbers  in  that   they  are 
much less subject  to  fluctuation.  In  calculations  for  past  cycles  this 
method  gave  the  very low standard  deviation of * 1.9.   For   forecast ing,  
however,  Mayot's  method is much  less   accurate .  

Wolf  numbers w a s  incorrect  (Vitinskii,  1956a), it will  not  be  given  here. 
However,  the  correct  formula  will  be  given  below,  during  the  discussion 
of the  corresponding  method  for  forecasting  the  smoothed  monthly  relative 
spot   numbers .  

Another  factor  deserves  mention  at  this  point.  Mayot  tried  to  predict 
the  Wolf  numbers  for  the  same  months in different  years,  and  his  back 
calculations of the  relative  spot  numbers  for  January  from  1896  to  1944 
gave a standard  deviation of f 9 . 2 .  However,  when  it  came  to  forecasting, 
the  error  was  once  again  considerably  higher.   Moreover,   in  this  case  the 
bas ic   p remise  of Mayot  was  false,  in  that a yearly  variation  in Wolf num- 
be r  is by no means  observed  in  every  cycle,  and  also in that  the  variation 
is so slight  that   i t   can  hardly  be  used as a basis  for  computations.  

Mayot's  method, as mentioned  above,  involves  considerable  error  when 
used  to  forecast   the  quarterly and  monthly Wolf numbers.  However,  since 
these  numbers  may  deviate  in  either  direction by 20 to  2570,  due to random 
variations  in  coefficient k (as  will  be  shown  below),  the  accuracy of the  fore- 
cast  may  still   be  adequate.  Thus  the  application of Mayot's  method for 
medium-period  forecasting is completely  justified.  Finally,  with  respect 
to  the  forecasting of monthly  relative  spot  numbers,  Mayot's  method is 
unique. 

Since  Mayot's  formula  for  the  prediction of the  smoothed  monthly 

§ 3. Forecasts  of Quarterly Wolf Numbers 
for  the  Next  Quarter 

Vitinskii  (1956b,  1960a, 1961~)  has   proposed  three  methods for fore-  
cast ing  the  quarter ly  Wolf numbers for the  quarter  to  come,  namely  the 
regression  method,  Mayot's  method,  and  the  modified  Mayot  method.  Let 
us first consider  Mayot's  method,  the  application of which, as noted  in  the 
previous  section,  involves  the  solution of a system of equations  such as 
(3 .2) .  Such a system of equations  can  be  solved  only if the  coefficients of 
the  normal  equations are sufficiently  separable.  Consequently,  it is advis- 
able  to  uti l ize  material   covering  the  period up to the  epoch of maximum or  
near  it, s ince  i t  is just  at  this  epoch  that  the  Wolf  numbers  are  large  enough 
to  satisfy  this  requirement.  Vitinskii  used  the  Zurich  quarterly Wolf numbers 
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fo r   t he   yea r s  1944  through  1959. By solving a system of equations  of  the 
f o r m  of (3.21, he  obtained  the  following  formula,  which  can  be  used  to  fore- 
cast   the   quarter ly  Wolf numbers  for  the  following  quarter: 

W, = 0.92Rrd + O.O4Ws+ 0.25WS - 0.24W1. (3.3) 

Back  calculations  for  the  years  1945-1959,  made  using  relation  (3.3), 
gave a standard  deviation of 524,  with w~ 106  (a relative  standard  devia- 
tion of *24qo) .  It  should  be  noted  that  the  largest  deviations  between  the 
computed and observed  values  correspond  to  the  period of strong  Wolf- 
number  f luctuations.   In  such  cases  the  relative  error  reached 4 7 % .  

but  in  contrast  to  Mayot's  original  method  it  does  involve  the  use of the 
quarter ly  Wolf numbers  themselves but rather  the  deviations of these  f rom 
some  mean  curve.   This  was  done  in  an  attempt  to  improve  the  separation 
of the  coefficients of the  normal  equations  when  using  the  Zurich  data  for  the 
yea r s  1940  through  1955. 

The  mean  curve  for  the Wolf numbers w a s  obtained  as  follows.  Let  us 
assume  that  the  average  length of a sunspot  cycle is 11  years,   as  shown by 

The  modified  Mayot  method is also  based  on  Mayot's  original  assumption, 

observations.  Then,  for  such a cycle we can  plot  an  average  curve  for  the 
yearly  relative  spot  numbers,   using  Stewart   and  Panofsky's  formula  (1.10) 
with a = +  7.1832  and b= + 1.2013  (Gleissberg,  1951a).  Here,  it is conveni- 
ent  to  take  the  cycle  intensity  as wy= 100, so that F =  0.3473.  The  quantity 
8 is  reckoned  from  the  epoch of minimum. 

If we assume  that  a and b are  constant  for  al l   cycles,   then  we  can  norm- 
alize  this  curve  for  each  specific  cycle,  using  the  ratio of its  intensity  to 
wu= 100.  The  cycle  intensity  is  determined as the  average of three  year ly  
Wolf numbers,   namely  those  measured  at   the  epoch of maximum,  one  year 
before  it ,  and one  year  after  i t .   For  the  current  cycle  this  curve w a s  plot- 
ted  using  the  forecasts of these  numbers  obtained  using  the  methods  dis- 
cussed  in  Chapter 11. F igure  10 shows  examples of these  curves  for  cycles 
17,  18,  and  19. 
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Next,  let  us  read off the  smoothed  quarterly Wolf numbers w, f rom  the 
mean  curves  and  then plot the  differences  between  these  numbers  and  the 
observed  relative  spot  numbers w. 

A W # = Y -  W4. (3.4) 

If we  solve a sys t em of equations of the  form 

by  the  method of least   squares,   then we can  obtain  the  required  formula 
for  the  prediction of AWi. Let  us  consider a solution of sys tem (3.5)  in 
s i x  unknowns.  In  this  case we obtain 

AW7~0.64AW~+0.17AW~+0.20AW~-0.2ZAW~, ( 3 . 6 )  

where AW,and Aw, are negligible  and so  have  been  omitted.  After  reading 
off  the  corresponding  value of W,from  the  mean  curve,   we  can  obtain  the 
quarterly Wolf number  from  the  formula 

W,=W,+AW,. (3.6a) 

Back  calculations of the Wolf numbers  for  the  years  1941  through  1955, 
made  using  formulas  (3.6) and  (3.6a).  gave a standard  deviation of f20, 
withan  average  quarterly Wolf number w, of 61 (relative  standard  deviation 
Of f 3 3  70). 

The  modified  Mayot  method,  as  the  preceding  figures  show,  has  only a 
relatively low accuracy.  This  is  to a large  extent  due  to  the  fact  that  this 
method is more  or less  a combination of two methods.  On  one  hand,  it 
uses  the  Stewart-Panofsky  curve,  which  is  based  on  ultralong-range  fore- 
casts  for  the  current  cycle;  on  the  other  hand,  it  includes a forecast   for 
the  perturbed  part AW,. Consequently,  the  accuracy of this  method  should 
be  expected  to  be  lower  than  that of each of its  component  methods.  Also, 
one of the  defects of the  modified  Mayot  method is that  it is quite  unsatis- 
factory  for  predicting  the  quarterly  relative  spot  numbers  during  periods of 
strong  fluctuation. 

The  regression  method  (Ol',  1954)  for  forecasting  yearly Wolf numbers 
can  also  be  applied  successfully  to  the  prediction of quarterly  numbers,  as 
a statist ical   analysis of the  Zurich  data  for  19  incomplete  solar  cycles  has 
shown.  In order  to  apply  the  regression  method, we require  a  quite  accurate 
knowledge of the  epochs of maximum and minimum of the  solar  cycles.   The 
methods  for  forecasting  these  quantities  will  be  discussed  in  Chapter IV, s o  
that  they wi l l  not  be  considered  here.  Let u s  just  observe  that  the  accuracy 
involved  in  determining t h e  epochs of extremum  upto  one  quarter  is   perfectly 
satisfactory.  

An examination of the  Zurich  data  for  the  rising  parts of 19 solar  cycles 
gave  the  following  regression  equations,  correlation  coefficients r, and 
standard  deviations a: 

W, =l.OSW, + 4 r=+0.55 a= f 4 
w,, = 1.36W,, + 3 r = +0.70 a = f 6 
W, =0.69W,, + 3 r=+0.81 a= f 4 

W- 1.42WA r=+0.89 a = f  9 
W,, =1.08W, + 5 r=+0.71 a = &  8 

, (3.7) 
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r = +0.92 
r = +0.90 
r = C0.94 
r= 9 . 9 1  
r = "0.94 
r = +0.95 
r = +0.97 
r = +0.97 
r = +0.96 
r = +0.90 
r = "0.88 
r = "0.97 

a= *ti0 
a= *12 
a= f12 
a= *i5 
a= *ti7 
a= f17  
a= *I3 
a= *10 
a= *14 
a= f l i  
a= *15 
a=*  9 

(3.7) 

It is clear  from relations (3.7) that  the  forecasts of the  quarterly Wolf 
numbers   for   the  f i rs t   four   quarters   are  not reliable  enough. For the 
ent i re   r is ing  par t  of the  cycle,  we  have U= f 12,  with w4= 49 (relative 
standard  deviation of *24%0). 

Analogously, for the  descending  part of the  cycle  we  obtain  the  following 

r = +0.96 
r = t0 .95  
r = tO.90 
r = +OB5 
r = +0.82 
r = 3-0.78 
r = +0.87 
r = -+0.91 
r = 3-0.92 
r = +0.92 
r = +0.77 
r = f0.88 
r = +0.86 
r = +0.89 
r = +0.90 
r = f0.84 

T -= +0.86 
r = +0.81 
r = f0.88 

r = +0.96 
r = +0.92 

a =  -112 
a= *I2 
a = k 1 8  
a= 522  
u= *21 
a= *23 
a= *I9 
a= *I5 
a= f 1 3  
a =  *fl 
a= z19 
a =  f14 
a= +12 

a = *  8 
a = *  9 
u= &I14 
a= *I1 

a= *I1 
a = &  8 
a = *  5 
a = *  6 

(3 .8)  
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W,,,=O.84W, + i r = +0.92 a= f 6 
W,=0.70WM+n+ I r=+0.83 u= -I 5 
W,,, = 0.89Wx+,, r z f 0 . 8 5  a = *  7 

WH+,, = O.70WH+,, r=+0.88 o=+_ 6 

(3.8) 

w,+= = i .02w,  r=+0.85 a = *  7 

For  the  entire  descending par t ,  U =  14,  with w,= 52 (relative  standard 
deviation of f 27 70). 

A comparison of the  accuracy of these  three  methods,   on  the  basis  of 
an  analytic  treatment of previous  observations,   shows  that   the  regression 
method  and  Mayot's  method  involve  smaller  errors  than  the  modified  Mayot 
method.  Moreover, i f  we  take  into  account  that  for  Mayot's  method  the 
error  increases  appreciably  upon  transit ion  from  back  calculations  to  fore- 
casts ,   then  i t  is clear  that  the  regression  method  should  be  considered as 
the  most  effective.  Unfortunately,  however,  for  solar  cycles  with  long 
rising  parts  (longer  than 17 qua r t e r s )  o r  with  descending  parts  longer  than 
26 quarters,  only  the  ordinary  and  modified  Mayot  methods  can  be  used  for 
the  quarters  involved. 

for  predicting  quarterly Wolf numbers  for  the  quarter  to  come.  Since  the 
forecast  must  be  made  at  the  end of the  preceding  quarter,   preliminary 
values of the  quarterly  relative  spot  numbers  for 83  or  84 days  (out of 90 
or 91 days) are used.  In  general,  this  has  little  effect  on  the  forecast ac- 
curacy,  except  in  cases of strong  solar-activity  fluctuations. 

Finally,  data are now available  which  make  possible  an  estimation  of 
the  accuracy of forecasts  of the  quarterly Wolf numbers  made  using  the 
modified  Mayot  method. An analysis of the  figures  for  the  period  from  the 
f i r s t   quar te r  of 1956 to  the  third  quarter of 1960  gives a standard  deviation 

of *27, with wl= 162, so that ( i - - ) l O O % =  84%.  This is much  higher 

than  the  value ( 1 -$) 100% = 6 7 %  obtained  from  back  calculations. 

Let us also  mention  one  technical  detail  which  pertains  to  all  the  methods 

Wf 

S 4 .  Forecas t s  of Quarterly Wolf Numbers 
Two Quarters  in  Advance 

For   var ious  pract ical   purposes ,   especial ly   for   cer ta in   problems  in  
geophysics  and  radiophysics,  it is very  important  to  forecast   quarterly 
Wolf numbers a longer  time i n  advance. A direct   a t tack on  this  problem, 
by means of repeated or even  double  forecasting,  leads  to  considerable 
e r r o r  and is thus  not  practicable. 

F i r s t ,   l e t  u s  r e s t r i c t  ou r  discussion  just   to  forecasts of the  quarterly 
relative  spot  numbers  two  quarters  in  advance.  In  addition,  let u s  introduce 
the  following  quantities:  the  ordinary  semiannual Wolf numbers w;; the  semian- 
nual Wolf numbers W ;  obtained  when  the  half-years are shifted  backone  quarter 
(which  will  be  called  the  special  semiannual Wolf numbers);   the  observed 
quarterly Wolf numbers W;; and  the  predicted  quarterly Wolf numbers W,. 

Vitinskii  (1960, 1961~)   has   p roposed   two  ways  of solving this problem. 
The first alternative is a prediction of the  ordinary  and  special   semiannual 
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Wolf numbers,  which are then  combined  with  the  quarterly  observed Wolf 
number  in  order  to  forecast   the  quarterly  relative  spot  numbers two quar te rs  
in  advance.  In  order  to do this,  the  following  formulas are used: 

WI =2w; -2W;,+w&, 
wu =2w; -2w; +Wm, 
tv,, = 2w;, - 2w; + y, 
w , = 2 w ; - 2 ~ n + w ~ ,  I 

I 

(3.9) 

where  subscripts  I   and I1  of ws and  indicate  the  corresponding  half- 
years,   while  subscripts  I   through IV of W, and W! indicate  the  quarters of 
the  year.  

The  second  alternative  consists  in  a  prediction of the  ordinary  and special 
semiannual  Wolf  numbers,  and  also of the  quarterly Wolf numbers ,   af ter  
which  these  are  combined  in  order to forecast   the  quarterly  relative  spot 
numbers,  using  the  formulas 

w1 =2w; - wm, 
w, =2w; -wl , 
Wu1=2W;,-Wn, 

w, = 2WiI - wm 

(3.10) 

As mentioned  previously,  for  this  type of forecast  an  advance  determina- 
tion  of  the  semiannual Wolf numbers is necessary.   Either of two methods 
can  be  used  for  this,  namely  the  regression  method  and  Mayot's  method. 

On the  basis of the  Zurich  data  for 19 incomplete  cycles,  the  following 
regression  equations w e r e  obtained  for  the  rising and descending parts of 
the  solar  cycle  (the  corresponding  values of r and u for  the  ordinary  semi- 
annual Wolf numbers   are   a lso  given):  

W:, = 1.53W- + 3 

W:, =1.30W:, + 6 
W " + 3  =l.2iWm, + I 2  
W-, = i.28Wm, + 9 
W m ,  = I .25W-, + 7 
W", = i . O l W - ,  + I 4  
W m ,  =i.i4w:, + 2 
Wm, = 1.37Wm+, - 8 

w;+l =0.84WL - 7 

w;, = 0.79w;+¶ + 11 
W;+, =0.96W;+, + I 

Wkd =0.84Wke + 2 
WkG =0.89Wk,, - 6 
Wi+, =O.SSW;, + 5 

r = +0.64 
r = +0.59 
r =+0.81 
r = +0.89 
r = +0.95 

r = +0.92 
r = +0.96 
r = +OB5 

r = +0.93 
r = 9 . 9 4  
r = +0.84 
r = +0.96 
r = +0.95 
r = v . 9 2  

a= & I 2  

a= & I 5  
a= *I2 
a= * I O  
a = *  9 

a = *  9 

(3.11) 

~ , (3.12) 
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Wk+, = 0.87WMG r = +0.89 a= *ti0 
Wk+, =0.58W;+, + 8 r=+0.80 a= f 6 
Wx+, = 0.85WkM + 1 r =+0.73 a= f12  
W;+,o = 0.77Wk+, r=+0.89 a = *  8 
W;,,, = 0.82Wk+1, r=+0.9i a=*  6 

, (3.12) 

An analysis :f past   data  for  the  r ising  part   gave a standard  deviation of 
f14 ,   wi th  vi= 51 (relative  standard  deviation of *27%).  For  the  descend-  
ing  part  of the  cycle,  the  standard  deviation  was f 10,  with vi= 56 (relative 
standard  deviation of f l 8 % ) .  It  should  be  noted  that,  according  to  (3.11), 
the  forecasts  of w; for   the   f i r s t  two  half-years of the  r is ing  par t  are un- 
reliable.  

For   the  special   semiannual  Wolf numbers ,   use  of the  same  dataled  to   the 
following  regression  equations  (and  values of r and 0 )  for  the  r ising  and  de- 
scending  parts of the  solar  cycle:  

WL+,l =1.33W; + 5 r=+0.58 a = f  6 ,  
W:, =i.72Wmt1 - 1 r =+0.81 a= f 9 
WL+3 = i.7OWk+* + 4 r = +0.93. a = +IO 
WL, =1.32Wkt3 +IO r=+0.94 a= f 1 6  
W:, =1.20Wm, + 5 r=+0.96 a=+12 ( 3 . 1 3 )  

w:, =1.17W~,, - 3 r=+0.95 a = f 1 7  
WL,, =1.05W”,+s +14 r=+0.95 a=*15 
W:+8 = 1.20W:+, + 9 r = f0.84 a= f17 
W:,, =0.98WLM - 1 r = +0.80 a =  +17 

w;+l = 0.82W;, 

K + ,  = WZI 

w;, - -1.12w>e - 17 
W>e =0.77W>+, + 10 

W>4  =0.67W;, - 9 
W>, =0.96WM+, - 9 
W>+, = 0.58W&, + 10 
WM+8 =0.98Wk+, - 1 
W>+,  =0.6ZWLe + 5 
W>+,, = 0.77W>+, - 2 
W>+,, = 0.75W>+lp 
W>+,, = O.88WM+,, - 2 

r = +0.96 
r = +0.93 
r = +0.92 
r = +0.92 
r = $0.88 
r = +0.83 
r = +0.94 
r = +0.84 
r = +0.80 
r = +0.91 
r = +0.94 
r = +0.94 

a= -+IO 
a =  +I4 
o= *I2 
a= k 1 3  
a= *I2 
a =  k 1 3  
3 = +  7 
a= +ll  
a= +IO 
a = &  6 
a=+  4 
a = f  4 

(3.14) 

In  this case the  standard  deviation  for  the  rising  part  was f 13,  with %= 
= 51  (relative  standard  deviation of f2570).   For  the  descending  part  of the 
cycle,  the  standard  deviation  was f 11, with %= 52 (relative  standard 
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deviation of f 2 1 7 0 ) .  Relations (3 .13)  show  that  the  forecasts  for  the first 
special   half-year of the  r is ing  par t   are   unrel iable .  

Mayot's  method  was  applied  to  predictions of the  ordinary  and  special 
semiannual Wolf numbers  in  the  Zurich  system  for  the  years 1935 through 
1959. In  both cases these  data  ensured a sat isfactory  separat ion of the 
coefficients of the  normal  equations.  To  forecast  the  ordinary  semiannual 
relative  spot  numbers,  w e  can  use  the  relation 

W;= 1.22W4 + 0.09Wj - 0.28W; - 0.iOW;. (3.15)  

Back  calculations  using  this  formula  gave a standard  deviation of f 1 9 ,  with 
wi= 82 (relative  standard  deviation of * 2 3 % ) .  

method  by  means of the  relation 
The  special  semiannual Wolf numbers  can  be  forecast  using  Mayot's 

Wi = 0.91W; + 0.60Wi - 0.37W2 - 0.22W;. (3 .16)  

Here  the  standard  deviation  was f 2 1 ,  with pi= 80  (relative  standard  devia- 
tion of 26 70). 

forecast   the  quarterly Wolf numbers two quarters  in  advance: 

numbers,   using  formulas (3.91,  (3.11),   (3.12),   (3,13),  and (3.14); 

using  formulas (3.91,  (3.15), and (3 .16);  

numbers  plus  the  modified  Mayot  method  for  the  quarterly Wolf numbers ,  
using  formulas (3.101,  (3.11),  (3.12),  (3.131,  (3.14),  (3.6), and (3 .6a);  

4 )  the  regression  method for the  ordinary and special   semiannual Wolf 
numbers plus  Mayot's  method  for  the  quarterly Wolf numbers,   using  formu- 
l a s  (3.10),   (3.11),   (3.121,  (3.13),   (3.14),  and (3.3); 

5)  the  regression  method for the  ordinary  and  special  semiannual Wolf 
numbers plus  the  regression  method  for  the  quarterly Wolf numbers,   using 
formulas  (3.10),   (3.11),   (3.121,  (3.131,  (3.14),   (3.71, and (3 .8);  

plus  the  modified  Mayot  method  for  the  quarterly Wolf numbers,  using 
formulas  (3 .10) ,   (3 .15) ,   (3 .16) ,   (3 .6) ,  and (3 .6a);  

7 )  Mayot's  method  for  the  ordinary and special  semiannual Wolf numbers 
p!us Mayot's  method  for  the  quarterly Wolf numbers,  using  formulas (3.101, 
(3 .15) ,   (3 .16) ,  and (3 .3);  

8) Mayot's  method  for  the  ordinary and special  semiannual Wolf numbers 
plus  the  regression  method  for  the  quarterly Wolf numbers,   using  formulas 
(3.10),   (3.151,  (3.161,  (3.7),  and (3 .8) .  

Each of these  methods [or combinations of methods]  has  its  advantages 
and its  defects.  Let  us  first  note  that  methods 3 ,   4 ,  and 5 involve  much 
lower  errors  than  the  other  methods.  For example,  back  calculations  for 
the  years  1945 through 1959 gave  the  following  standard  deviations o and 
predictabilities 

It  follows  from  the  preceding  that  eight  different  methods  can  be  used  to 

1)  the  regression  method for the  ordinary  and  special  semiannual Wolf 

2 )  Mayot's  method  for  the  ordinary and special  semiannual Wolf numbers,  

3 )  the  regression  method for the  ordinary  and  special  semiannual Wolf 

6 )  Mayot's  method  for  the  ordinary  and  special  semiannual Wolf numbers  
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a (1 4 )  loo*/* 
Wi 

1) f 36 66% 5) f 25 76 % 
2) * 44 55 6) f 36 63 
3) f 31 70 7) 32 67 
4) * 26 75 8) * 41 59 

Methods 1. 3 ,  4,  and 5 are based  on  the  regression  method, a method 
which  can  be  used  only  to  determine  t imeintervals  away  from  the  epochs 
of sunspot  maximum  and  minimum (4.5 years  and 6 years  respectively).  
Thus, for  example,  these  methods  could  not  be  applied  to  the  back  calcula- 
tions  for  the  period  from  the  fourth  quarter of 1953 to   the  fourth  quarter  of 
1954. 

Another  important  factor  concerning  the  regression  method  also  de- 
serves  mention,  namely  that   this  method  cannot  be  used  unless  the  epochs 
of ex t rema of the  solar  cycle are known in  advance.  There are methods 
available,  however (see Chapters I V  and V), which  make  it  possible  to  de- 
termine  these  epochs  to  within a half-year. 

Mayot's  method, as is evident  from a comparison of the  corresponding  rela- 
tions. 

W e  have  already  discussed  some  defects of Mayot's  method.  However, 
let  us now consider  one  defect of the  modified  Mayot  method  which is pa r -  
ticularly  influential  when  this  method is combined  with  Mayot's  method  for 
the  semiannual Wolf numbers.   The  quarterly  relative  spot  numbers  calcu- 
lated  using  this  method are generally  too  high f o r  the  very  beginning of the 
r i s ing   par t  of the  cycle,  and  this  lowers  appreciably  the  quarterly  numbers 
forecast  two quarters  in  advance by means  of method  6.  In  this  case  the 
very  rough  approximative  correction of $. 44 should  be  introduced  for  the 
first  two  years  of  the  cycle.  This  method  reduces  the  standard  deviation 
f rom f 38 to f 26,  but i t   st i l l   represents  only a very  rough  approximation. 

i t  is only  natural  to  assign  higher  weights  to  methods 1, 3, 4, and  5,  which 
are based  on  the  regression  method,  In  order  to  increase  the  accuracy of 
the  forecasts of the  quarterly Wolf numbers  two quarters  in  advance,  i t  is 
necessary  to  take  the  average of the  values  obtained  using  the  various  meth- 
ods,  weights of 2 being  assigned  to  methods 1, 3,  4, and 5 ,  andweights of 1 
being  assigned  to all the  other  methods.  Back  calculations  for  the  years 
1945  through  1959  have  shown  that  this  procedure  will  reduce  the  error  ap- 
preciably.  The  standard  deviation of these  averaged  predicted  quarterly 
Wolf numbers  was  f25,  withw4=  98,  giving a predictability of 757'0. This 
value is quite  acceptable,  provided it is taken  into  account  that  the  methods 
for  forecasting  the  quarterly Wolf numbers  for  the  quarter  to  come  have 
practically  this same predictability.  However,  the  main  disadvantage of 
such  calculations,  namely  the large forecast ing  errors   during  t imes of 
strong  f luctuations,   st i l l   has  i ts   effect   in  this case. 

The  regression  method is much less sensit ive  to  strong  f luctuations  than 

Since  Mayot's  method  involves  higher  errors  than  the  regression  method, 

§ 5. Forecas ts  of Smoothed  Monthly Wolf Numbers  

As  mentioned  in § 2  of this   chapter ,   forecasts  of smoothed  monthly Wolf 
numbers   were  firet developed  by  Mayot  (1947).  On  the  basis of the same 

57 



initial  data as Mayot  (for  the  period  from  1931  to  1944),  Vitinskii  derived 
the  following  formula for the  prediction of the  smoothed  monthly Wolf num- 
b e r s  w, one  month  in  advance: 

w6 = 0.99w4 + I .22ip, - i.70W2 + 0.49w1, (3.171 

to  replace  the  incorrect  formula of Mayot.  Back  calculations for these 
years,   using  formula  (3.17),   gave a Standard  deviation of f 1.9. Such a 
low error   makes  this   method seem very  attractive,   but,   on  the  other  hand, 
cer ta in   propert ies  of the  calculation of smoothed  relative  spot  numbers 
lead  us  directly  to a very  grave  difficulty. 

W e  know that  the  quantities w, are usually  determined  using  formula (2) 
of  the  Introduction.  It is clear   f rom  this   formula,   however ,   that   the  
smoothed  monthly Wolf numbers  cannot  be  obtained  earlier  than six months 
before  the  given  time. If a l l   these Wolf numbers are calculated  successively 
using  Mayot's  method,  then  the  cumulative  error  will  be so great   that  any 
advantages of this  method  (with  regard  to  accuracy)  will  be  reduced  to 
naught. To overcome  this  obstacle,   Vitinskii   (1956~)  proposed  using  the 
correlation  between  the  observed  and  smoothed  monthly Wolf numbers.  The 
corresponding  correlation  coefficient is r =  + 0.93 and  the  regression  equa-  
tion is 

wi=o.9aw4+2. (3.18) 

This  procedure  naturally  lowers  the  accuracy of the  predictions  made 
according  to  Mayot 's   method,  especially  in cases of solar-activity  f luctua- 
tions,  when  the  smoothed  relative  spot  numbers  obtained  from  (3.18)  may 
be  exaggerated  considerably.   However,   the  errors  in  this case  are never-  
theless  lower  than  those  entering  in  when  the  alternative  method,  proposed 
by  Mayot,  for  predicting  the Wolf numbers of the same months  in  different 
yea r s  is used. A purely  technical  detail  should also be  noted,  namely  that 
to  make  forecasts  using  this  method  it is quite  sufficient  to  have  preliminary 
monthly  relative  spot  numbers  for 23 to 27 days (out of 3 0  or   31   days ) .  

An examination of the  data   for   the  per iod  f rom  January 1956 to   October  
1959  has  shown  that  Mayot's  method  for  forecasting  the  smoothed  monthly 
Wolf numbers  for  the  following  month  gives a standard  deviation of f27, 
with k= 168  (an  average  predictability of 84%). 

false  fluctuations  into  forecasts of the  smoothed  relative  spot  numbers.  
This is i l lustrated by Figure  11,  in  which  the  solid  curve  represents  the 
variation of smoothed  monthly Wolf numbers  for 1956  and  1957 as com-  
puted  from  observed  quantities,  while  the  dashed  curve  gives  the Wolf 
numbers  predicted  using  Mayot's  method. 

crease the  forecast  range  for  smoothed  monthly Wolf numbers,  Vitinskii 
proposed a regression-interpolation  method  which  has  the  advantages of 
simplicity  and  quite  good  accuracy.  This  method  will now be  described. 

and  special  semiannual Wolf numbers.   Semiannual  relative  spot  numbers 
can  be  considered as characteristic  smoothed  quantities,  since  they  rep- 
resent   an  average of six  monthly  values of the  given  solar  index.  There- 
fore ,   these  numbers   can be used  to  predict  the  smoothed  monthly  Wolf  num- 
bers .   Once  we know the  semiannual Wolf number  for  the  f irst   half   of a 

W e  have  already  mentioned  that  the  use of equation  (3.18)  may  introduce 

In order  to  eliminate  this  defect  and  (which is no less   important)   to   in-  

In  the  preceding  section  we  discussed  the  regression  method  for  ordinary 
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given  year  (referred  to  April) ,   and  once  we  have  forecasted  the semi- 
annual Wolf number  for  the  second half (referred  to  October),   using  the 
regression  method,  it is possible  to  obtain  by  interpolation  predicted 

smoothed Wolf numbers  for  July,   August,  
September,  and  October of this   year .  
Analogously,  on  the  basis of the  special   pre-  
dicted  and  observed  semiannual  relative 
spot numbers,   we  can  estimate  in  advance 
the  smoothed Wolf numbers  for  October,  
November,   December,  and J a n u a r y ,   o r  
April,  May,  June,  and  July. By means of 
the  ordinary  semiannual  numbers,   we  can 
obtain  values of the  given  index  for  January, 
February,   March,  and  April .  

49 -" 
2 0 ~ ~ ~ ~ " ' " ~ ~ ' ' ' ' ' ~ ' ~ ~ '  makes  i t   possible  to  predict   the  smoothed 

cases  (February,   May,  August,  and  Novem- 
b e r )  two  months  in  advance,  and  sometimes 
even  four  months  in  advance  (for  March,  June, 

Thus, the regression-interpolation  method 

" '' ' monthly Wolf numbers  for  the  least   favorable '"' x '' ' 
1956 1957 

FIGURE 11 

September ,  and December).  The  variation of the  predicted  smoothed  monthly 
relative  spot  numbers is much  smoother  than  that  obtained  when  Mayot's 
method is used.  This is c lear   f rom  F igure  11, in  which  the  variation of the 
numbers  computed  using  the  regression-interpolation  method is shown  by 
the  dash-dot  line. 

Back  calculations  for  the  period  from  January 1956 to  October  1959,  made 
using  this  method,  gave a standard  deviation of k l 2 ,  with W t =  168  (average 
predictability of 93 70). If w e  take  into  account  that  the  regression-interpola- 
t ion  method  also  increases  the  forecast   range  for  the  smoothed  monthly 
Wolf numbers  considerably,  then  the  advantages of this  method  over  Mayot's 
method  become  quite  obvious. 

Let us now consider  the  method,  developed by Herrink  (1958,  1959),  for 
forecasting  the  smoothed  monthly Wolf numbers  up to  the  end of the  current  
solar  cycle.  This  method is based  on a suggestion  made by Anderson  (1954) 
that   there   may  exis t  a 169-year  cycle of solar  activity,   since  the Wolf num- 
bers   for   the  per iods 1749 to 1785  and  1918 to  1954  show a qui te   c lose  cor-  
respondence.  Herrink  compared  the  smoothed  monthly  relative  spot  num- 
bers   a t   the   beginning of the  r is ing  par ts  of cycles  4  and  19,  taking  July 
1784 as the  beginning of the  4th  cycle  and  April 1954 as the  beginning of the 
19th  cycle. He obtained  the  following  regression  equation: 

Here,  the  subscripts  indicate  which  11-year  cycle is referred  to .  
A forecast   made  according  to  this  formula  gave a standard  deviation of 

only f 1.6.  In  an  attempt  to  increase  the  forecasting  accuracy,  Herrink 
used  the  data  for  the  period  from  April  1954  to  October  1958  and  obtained 
the new regression  equation 

rlB = 1 .S27w4 - 13.4. (3.20) 

This  equation  differs  only  slightly  from  equation (3.19). Equation (3.20) 
can  be  used  to  forecast   the  smoothed  monthly Wolf numbers  UP to  the  end 
of  the  19th  cycle. 
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Table 10 l ists   the  smoothed  monthly Wolf numbers  predicted  for  1957 
and  1958  according  to  formula  (3.19)  (columns  pred.)  and  for  the  years  1959 
through  1967  according  to  formula  (3.20).  The  observed  values for 1957  and 
1958 are also  given  (columns  obs.).  Starting  with  November  1966,  formula 
(3.20)  gives  negative  values,  and  Herrink  replaced  these  by  zeros. 

T A B L E  1 0  

Predicted  smoothed  monthly Wolf numbers for 19th cyc le  (Herrink) 

Month 

I 
11 

111 
IV 
V 

VI 
VI 1 

VI11 
IX 
X 

X I  
XI1 

1957 - 
prec 

172 
175 
182 
185 
184 
188 
191 
189 
191 
196 
197 
197 

- 

- 

- 
obs. 

170 
172 
177 
183 
181 
189 
191 
190 
194 
194 
197 
197 

- 

- 

T 1958 - 
pred. - 
196 
189 
181 
180 
179 
178 
176 
177 
178 
174 
169 
167 
- 

T - 
obs. 

198 
199 
203 
198 
191 
189 
187 
182 
183 
18 1 
181 
180 

- 

__ 

- 
1959 

- 
164 
163 
168 
165 
167 
163 
160 
157 
153 
147 
143 
140 
__ 

- 

1960 

- 
137 
136 
129 
122 
117 
111 
108 
106 
103 
100 
91  
95 

- 
1961 

- 
93 
91  
89 

/*I 8.! 

7 8 
85 
83 
8 1  
80 
82 
- 

1962 

- 
8 1  
80 
79 
78 
I7 
76 
75 
73 

' 7 1  
70 
68 
64 
- 

1963 

_. 

62 
61  
59 
58 
57 
55 
51  
52  
50 
49 
48 
46 
- 

1964 

- 
46 
49 
50 
47 
46 
43 
40 
4 1  
36 
33 
31  
2a 
- 

1965 

- 
29 
28 
23 
19 
19 
16 
19 
19 
16 
17 
16 
15 

.966 

15 
14 
11 
11 

9 
6 
5 
2 
1 
1 
0 
0 
- 

1967 

0 
.O 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
- 

F o r  all  its  attractiveness,  Herrink's  method  has  the  following  two seri- 
ous  defects. 

1. It  presupposes  the  existence of a 169-year  cycle,  but  does  not  take 
into  account  the  80-year  to  90-year  cycle,  the  existence of which  has  been 
quite  reliably  established.  Consequently,  its  flexibility is somewhat  limited; 
strictly  speaking,  it   applies  only  to  the  19th  cycle  and not even  to  all of it. 

2.  Herrink's  assumption  that  the  descending  parts of cycles 4 and  19 
have  the  same  length is deZinitely an  arbi t rary  one.  Many authors  have 
placed  the  epoch of minimum of the  20th  cycle  no  later  than  1966,  and ac- 
cording  to 01 '  (1960)  it  will  be  1965.2.  Therefore,  the  values  forecast  for 
1964 and  1965 are  apparently  too high. 

Nevertheless,  i f  suitably  modified,  Herrink's  method  can  be  used  to 
predict  the  smoothed  monthly Wolf  numbers and  the  quarterly WolP num- 
be r s  not  only  for  the  19th  solar  cycle  but  also €or any  other  cycle,  particu- 
lar ly   for  a cycle of higher  intensity. 

§ 6 .  Forecas t s  of Observed  Monthly 
Wolf Numbers 

A s  mentioned  in  the  Introduction,  the  observed  monthly Wolf numbers 
fluctuate  greatly.  Therefore,  the  prediction of monthly  relative  spot  num- 
bers,  even  just  one  month  in  advance, is a quite  complicated  problem. 
Forecas t s   w i th   e r ro r s  up  to  25%  may  thus  be  considered  quite  acceptable, 
since  the  monthly Wolf numbers are uncertain  within  this  margin. 

to  come is Mayot's  method.  Using  the  Zurich  data  for  1951  through  1956, 
The  only  method  for  forecasting  the  monthly  Wolf  numbers  for  the  month 
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Vitinskii  (1960a)  obtained  the  following  equation  for  the  prediction of 
monthly  relative  spot  numbers: 

w, = o.ai w4 - 0 . 1 4 ~ ~  + 0.51 w, - OASW,. (3.21) 

Back  calculations  for  1944  through  1956  made  using  this  formula  gave a 
standard  deviation of f22  ( re la t ive  s tandard  deviat ion of  27 ’7’0). 

the  following  equation  was  derived  from  the  Zurich  data  for  1954  through 
1958: 

Later ,   in   order   to   ensure a more  reliable  application of Mayot’s  method, 

W~=i.32W~-Oo.61W~+0.82W~-Oo.52W, (3.22) 

and  i t   represents a better  characterization of the  current   cycle .  -For back 
calculations  this  equation  gave a standard  deviation of f 22 with W,= 123 
(relative  standard  deviation of  18’7’00). 

Mayot’s  method  gives  the  highest  errors  during  periods of strong  f luctua- 
tion  in  solar  activity.  Consequently,  certain  artificial  procedures  have  been 
introduced  to  increase  the  forecast  accuracy  for  the  monthly Wolf numbers.  
F i r s t   l e t  u s  note  that so far it is s t i l l   impossible   to   foresee  the  onset  of a 
strong  fluctuation  with  any  reliability  at  all,  even  with  an  accuracy  up  to 
one  quarter.  The  methods  described  in  the  following  thus  only  are  intended 
mainly  to  predict  the  duration of a fluctuation. 

An analysis of the  statist ical   data  shows  that ,   except  in  rare  cases,  a s h a r p  
increase  in  solar  activity is followed by a drop in activity  during  the  next 
month.  Therefore,  to a first   approximation, w e  can  neglect  such  rises  in 
activity  and  we  can  utilize  for  forecasting  purposes  only  the  general  upward 
o r  downward  trend of the  activity  curve fo r  the  given  cycle. 

The  next  approximation  will  consist  in  taking  into  account  the  develop- 
ment of long-lived  sunspot  groups,  since  fluctuations  in  solar  activity  are 
often  determined by these  groups.  In  Chapter  I,  § 5 the  main  features of 
the  development of long-lived  spot  groups  were  described,  and  these  fea- 
tures  can  be  used  to  obtain  purely  qualitative  estimates of the  rate of drop 
of solar  activity  toward  the  next  solar  rotation. 

Finally,   st i l l   another  approximation is possible,  in  view of the  fact  that 
active  longitudes  have a quite  considerable  effect  on  fluctuations  in  solar 
activity. A study of the  processes  related  to  active  longitudes  has  shown 
that  these  are  rhythmic,  with  an  average  period of 4 or  5 solar  rotations 
(Vitinskii  and  Rubashev,  1957).  Since,  at  any  given  time,  one  of  the  exist- 
ing  active  longitudes  predominates,  therefore w e  can  in  general  predict 
with  some  reliability  approximately  when a fluctuation  in  solar  activity is 
to  be  expected.  However,  an  important  reservation  must  be  made  here. 
The  active  longitudes  in  the  aforementioned  reference were studied  using 
the  spot-group  area as an  index,  and  the  behavior of this  index is different 
f rom  that  of the Wolf numbers.  Therefore,  the  conclusions  obtained  can- 
not  be  reliably  applied  to  forecasting of the Wolf numbers   ra ther   than  the 
areas. 

Finally,  let u s  estimate  the  accuracy of forecasts  of the  monthly Wolf 
numbers  made  for  the  following  month,  using  Mayot’s  method. An analysis 
of the  data  for  the  period  from  July  1957  to  September  1960  gives a stand- 

ard  deviation of f28 ,   wi thw‘ ,=  168 (so that (1 --“)loo% = 83%).  This is 

somewhat  better  than  the  figures  obtained  for  back  calculations, a situation 
J v 4  
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contrary  to  what is generally  expected of Mayot's  method  for  predicting 
the  smoothed Wolf numbers.  It  should  also  be  mentioned  that so  far no 
method is known  which  makes  it   possible  to  forecast  the  observed Wolf 
numbers  two  months  or  more  in  advance. 

§ 7 .  The  Analog  Method  for  Forecasting 
Quarterly Wolf Numbers 

A somewhat  modified  form of Herrink's  method,  which w a s  described 
in § 5 of  this  chapter,  makes  it   possible  to  forecast  the  quarterly Wolf num- 
b e r s  for the  entire  descending  part  of the  current  cycle.  In  view of the 
previously  cited  defects of this  method,  however,   let   us  here  proceed  from 
basic   premises   which  are   somewhat   different .   Firs t   le t   us   note   the  fol low- 
ing  two  facts: 

1) one  of  the  most  important  characteristics of the  solar  cycle  (Xanthakis, 
1959) is the  length of the  r is ing  par t  of the  cycle; 

2 )  the  lengths of the  descending  parts of analog  cycles  usually  differ 
f rom  those of the  prototype  cycle, so  that  these  lengths  can  be  determined 
only by means of the  existing  methods  for  forecasting  the  epoch of minimum 
of a solar   cycle .  

Since  the  method  proposed by Vitinskii  (1960e, 1 9 6 1 ~ )   s t a r t s  by  selecting 
an  analog  cycle  for  the  given  cycle,  therefore  this  method  will  be  called  in 
the  following  the  analog  method.  The  analog  cycles  will  be  chosen  according 
to  two  cri teria:   f irst ,   equali ty (or at  least   approximate  equality) of the 
lengths of the  r ising  parts of the  test  cycle  and  the  given  cycle;  and  second, 
the  closest  possible  correlation  between  the  quarterly Wolf numbers  for  the 
r is ing  par ts  of the  two  cycles.  The  rising  part of the  test   cycle  must  be no 
more  than  one  quarter  longer  than  the  r ising  part  of the  given  cycle.  Even 
if all  the  correlation  coefficients are high,  still only the  cycle  with  the  very 
highest r is selected.  If more  than  one  cycle   has   the  same  [highest]   correla-  
tion  coefficient,  then  all  these are used. 

The  adoption of this  procedure,  and the  rejection of Herr ink ' s   bas ic  
premises,  are  completely  justified.  Actually, i f  the  existence of a 169- 
year   so la r   cyc le  is assumed,  then  the  analogs of the  17th  and  18th  11-year 
cycles are the 2nd and the  3rd  cycles.  However,  Vitinskii  has  shown  that 
the  analog of the  17th  cycle  is  really  the  10th  cycle,  while  that of the  18th 
cycle is the  11th  cycle.  Moreover,  cycles 4 and 13 can  equally  well be 
considered as analogs of the  19th  cycle. 

of the  cycle,  right  to  the  end of the  cycle,  a regression  equation  must  be 
derived  from a comparison of these  numbers   for   the  r is ing  par ts  of  the 
given  cycle  and  the  analog  cycle  (as  was  done by Herrink  for  the  smoothed 
monthly  relative  spot  numbers).  Back  calculations  for  the  descending  parts 
of cycles 17 and 18, made  using  the  regression  equations  obtained  for  these 
cycles,  gave  predictabilities of 63% and 7270, respectively.   The  difference 
in  predictability is due to the  fact   that   less  strong  cycles  f luctuate  more,  
and  to  the  fact  that  the  periods of strong  fluctuations i n  different  cycles 
seldom  coincide  to  within  one  quarter. 

In order   to   forecast   the   quarter ly  Wolf numbers  for  the  descending  part 
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On  the  basis of the  analog  method,  Vitinskii  obtained  the  following  regression 
equations for the  19th  cycle: w,, = 1.49w, + 2, (3.23) 

W,, = 2.4lWl3 + 2, (3.24) 

where  the  subscripts  indicate  the  number of the  cycle.  
Back  calculations  for  the  period  from  the first quarter  of 1958 to  the 

third  quarter  of 1960,  made  using  formula  (3.23),  gave a relative  standard 
deviation of 17%, while  calculations  using  formula  (3.24)  gave a relative 
standard  deviation of 16 70. Since  both  analog  cycles  have  approximately 
the same relevant   character is t ics ,  w e  took  the  average of the  two as 
the  forecast   parameter.   This  was  also  reasonable  because  the 4th cycle 
has  an  anomalously  long  descending  part  (in  contrast  to  the  13th  cycle),  and 
this  could  thus  have  caused  the  numbers  predicted  for  the last yea r s  of the 
current  cycle  to  be  too  high.  After  the  averaging,  back  calculations  for  the 
period  from  the  f irst   quarter of 1958  to  the  third  quarter of 1960  gave a 
relative  standard  deviation of 15%. 

It is clear  from  this  example  that   the  analog  method  makes  i t   possible 
to  predict  the  quarterly Wolf numbers  only  for  the  descending  part of the 
cycle.  Since  the  descending  part  differs  essentially  from  the  rising  part, 
therefore  the  accuracy of the  forecast  numbers  should  be  improved as the 
descending  part of the  cycle  develops;  this  can  be  done  using  additional  data 
and  modified  regression  equations. 

1960) are introduced,  then we obtain  the  following  regression  equations: 
If data  for  the  descending  part of the  19th  cycle  (for  the  third  quarter of 

W], = 1.39w* + 3, (3.25) 
Wl, = 2.37W13 - 9. (3 .26)  

These  equations  do  not  differ  much  from  equations ( 3 . 2 3 )  and  (3.24),  but 
they are  more  reliable,   since  they  reflect   the  tendency of the  drop  in solar 
activity  during  the  current  cycle.  

TABLE 11 

Forecast of quarterly Wolf numbers  for 1958-1965 (according IO Vitinskii)  

Quarter 1958 

P " 0  p P--0 P P " 0  P 

1960 1959 
1961 1963  1962 

I 
52 87 86 + 1  127 -11 170 +2 183 11 
67 62 88 +42 157 -14  168 +18 204 

In 
39 66 81 104 + 4 2  162 +16 190 IV 
37 60 64 -22 108 -27 171 +22 220 

+ 
40 

Table 11 gives  the  predicted  quarterly Wolf numbers  ( the  averages of the 
values  obtained  using  formulas  (3.25)  and  (3.26))  for  the  period  from  the 
fourthquarter  of 1960  to  the  f irst   quarter of 1965.  The  epoch of minimum  for 
the  20th  cycle is taken,  according  to 01' (1960), as 1965.2.  The  table  also 
gives  the  quarterly  relative  spot  numbers  computed  in  the  same  way  using 
formulas  (3.23)  and  (3.24),  for  the  period  from  the  first  quarter of 1958  to 
the  third  quarter of 1960  (columns p in  the  table),  and  also  the  deviations of 
these  from  the  observed  Zurich  quarterly  numbers  (columns  (p-0)). 

and  1965 are apparently  too  high, since even  the  descending  part  of the  13th 
cycle is longer  than  the  predicted  descending  part of the  19th  cycle. 

It  should  be  noted  that  the  numbers  given  in  the  table  for  the  years  1964 
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Chapter I V  

ULTRALONG-RANGE  FORECASTS 
O F  SOLAR ACTIVITY 

§ 1.  General   Remarks 

A s  mentioned  in  the  Introduction,  the  ultralong-range  forecasting of 
solar  activity  has  had a great  number of works  devoted  to  it,  many of these 
involving  very  complicated  mathematics,  and  yet  it  is likely  that  this  sub- 
ject  has  provided  the  highest  number of failures  and  disappointments  in 
so l a r   r e sea rch .  Many  outstandingmathematicians  (such as Schuster,   Jewell ,  
and  Slutskii)  have  examined  the  problems  related  to  ultralong-range  fore- 
c a s t s ,  but  these  problems  are  st i l l   far  from  being  solved,  even  today. 

The  f i rs t   basic   s tudies  of ultralong-range  forecasts were made  at   the 
end  of  the  19th  century.  However,  the  most  intensive  development of these 
methods  took  place  at  the  beginning of this  century.   From  almost  the  very 
beginning,  two  contradictory  hypotheses  were  advanced,  namely  the  super- 
position  hypothesis  and  the  "eruption"  hypothesis.  According  to  the  super- 
position  hypothesis,  which  was  suggested by Wolf in  about  1889,  the  curve 
of sunspot  growth  represents  the  result  of a superposition of many  periodic 
processes.   In  principle,   this  may  yield a curve of any  desired  complexity. 
According  to  the  "eruption"  hypothesis,  first  advanced  by  Halm  (1901),  each 
11-year  sunspot  cycle is considered  to  be a m o r e   o r  less independent 
eruption,  and  must  be  considered by i tself .  

role  in  the  development of methods  for  forecasting  solar  activity  within a 
given  11-year  cycle.  However,  when  applied  to  ultralong-range  forecasts, 
this  hypothesis  has  had a somewhat  negative  effect.  The  superposition 
hypothesis,  with  all  its  defects,  has  served  as a stimulus  for  the  develop- 
ment  of methods of ultralong-range  forecasts.  Although at   present  this 
hypothesis is of purely  historical   interest ,   st i l l   let  u s  open by discussing 
some  methods  which are based  on  it.   The  most  reasonable  methods,  those 
which  were  developed  later,   will   be  stressed  here,  

In  this  chapter  some  methods  based  on  the  properties of the  80-year  to 
90-year  cycle  and  the  22-year  cycle  will  also  be  discussed.  These  methods 
give  the  highest  predictability.  Schove's  method,  which is based  on  very 
extensive  actual  data, is especially  interesting. 

ing of spot-group areas. Although  these  methods are essentially semi- 
qualitative,  they are nevertheless  significant,   since  they  represent a f i r s t  
attempt  toward  forecasting  still   another  solar-activity  index. 

cycle is also a very  interesting  problem.  The  basic  studies  of  this  subject 

W e  have  already  noted  that  the  "eruption"  hypothesis  played a significant 

Finally,  we  will  also  consider  methods  for  the  ultralong-range  forecast- 

Forecast ing  the  main  character is t ics  of the  next  (the  20th)  sunspot 
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have  therefore  been  collected  to form a special  chapter,  the  content of 
which is closely  related  to  that of the  present  chapter.  

J 2. The  Superposition  Method 

The  superposition  method is based  on  the  superposition  hypothesis,  which 
was  stated  in  the  preceding  section.  Since  this  hypothesis  maintains  that  the 
shape of the  sunspot  curve is determined  not  by  one  but by several   per iods,  
therefore   the  main  effor ts  of various  researchers  were  directed  toward  dis-  
covering  all  the  possible  periods  which  would  give  the  best  fit  for  theactual 
curve  shape.  

Wolf (according  to  Kimura,  1913)  found,  in  addition  to  the  period of 11.33 
years ,   per iods of 10,  8,  33,  and  81  years.  Thiele  (1859)  discovered,  be- 
side  the  main  period,  three  additional  periods,  9.805,  5.950,  and 3.76 yea r s  
in  duration.  Finally,  Schuster  made  an  important  contribution  toward  defin- 
ing  the  main  periods of solar  activity.  Using  the  method of periodogram 
analysis  which  he  developed,  Schuster  (1906)  isolated a total of s ix   per iods,  
including  one  11.125  years  in  duration.  It  should  be  noted,  however,  that 
he  did  not  obtain a satisfactory  fit  for  the  Wolf-number  curve. 

w a s  that of Kimura  (1913). He used  the  yearly Wolf numbers   for   the   years  
1750  to  191 1 in order  to  obtain 29 sinusoidal  terms,  which  give a general  
representation of the  relative  spot  numbers  in  the  form 

The  first  attempt  toward  an  ultralong-range  forecast of the Wolf numbers 

where n=i,. . ., 29, a, is the  amplitude,  and A ,  is the  phase  in  the  epoch of 
1835.5.  Although  most of these  periods  can  hardly  be  considered  to  exist, 
s t i l l   Kimura 's   ser ies   gave a quite good fit  for  the  curve of the  relative  spot 
numbers.  F o r  the  years  1750 to   1800  the  mean  error   in   the  curve  f i t  w a s  
f 10  (with a maximum of 28),  and  for  the  years  1800  to 1916 it  w a s  f 6  (with 
a maximum of 13.6). It  should  be  noted  that  one of the  periods  found by 
Kimura w a s  82.2  years.  

Kimura  predicted  the  yearly Wolf numbers   for   the  years  1913  to  1950. 
His  forecast  for  the  15th  cycle w a s  rather  unsatisfactory  (maximum Wolf 
number of 60 and  epoch of maximum  1914, as compared  with  the  actual 
values of 104 and  1917),  but  his  predictions  for  the  16th  and  17th  cycles 
were  acceptable:  

16th cycle . . . . . . . . . wM = 85 (78); epoch of maximum 1927.5  (1928) 
17th cycle . . . . . . , . . WM=125(114); epoch of maximum 1937 (1937) 

The  accuracy of Kimura's   forecast   for  the  17th  cycle is actually  no  lower 
than  that of Waldmeier 's   forecast  ( w ~ =  124 and  epoch of maximum  1937.7). 
The  difference  between  the  two,  however, is that  Kimura  made  his  forecast  
in  1913,  while  Waldmeier  made  his  much  later,  in  1935.  Figure 12 shows 
Kimura 's   resul ts .   The  sol id   curve  indicates   the  observed Wolf numbers 
and  the  dashed  curve  gives  the  numbers  computed by Kimura. 

tion  methods,  since  they  only  differ  from  one  another  with  respect  to  the 
mathematical  apparatus  used  (periodogram  analysis,  harmonic  analysis, 
Fourier  functions,  etc.).  It is sufficient  just  to  mention  that  the  main 

It is not  neccessary  to list here  the  many  works  dealing  with  superposi-  
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studies   were  those of Turne r  (1913a),  Michelson (19131, Alter (19281, 
Oppenheim (19281, Stumpff (19301, Clayton  (1939),  and  Anderson  (1939). 
Most of these  studies  were  definitely  unsuccessful.  A good il lustration 
of this  is Anderson's  forecast,  which  presupposes  the  existence of a 312- 
year  period.  According  to  this  forecast,  the  epoch of maximum  for  the 
18th  cycle falls in  1951  (actually  it  was  1947)  and  that of the  19th  cycle 
falls  in  1961  (actually it was  1957);  the  corresponding  predicted  maximum 
Wolf numbers are 75  (instead of 151)  and  103  (instead of 190).  The  main 
reason  for   the  fa i lure  of the  superposition  methods is their   excessive  formal- 
ity. Too much  attention  was  given  to  short  periods  (shorter  than 11 yea r s ) ,  
while  the  significance of long  periods  for  ultralong-range  forecasts  was  defi- 
nitely  underrated.   The  most  erroneous  results  were  obtained  when  the 
Wolf-number  curve  was  expanded  into a Fourier  series; on  the  other  hand, 
periodogram  analysis  and  the  construction of a resul tant   curve  using  a l l  
the  periods  obtained  may  give  results  which are not  bad, as is evident  from 
Kimura 's   s tudies .  

Consequently,  the  superposition  method  cannot  give  satisfactory  fore- 
c a s t s  of the Wolf numbers  for  subsequent  cycles.   I ts  real significance  was 
just  to  draw  attention  to  the  study of long-period  sunspot  cycles  and  to  stress 
the  importance of ultralong-range  forecasts of Wolf numbers.  

§ 3 .  Gleissberg's  Method 

J u s t  as Waldmeier  was  the  f irst   to  give a successfu l   forecas t   o f there l -  
ative  spot  numbers  for  the  current  cycle,  s o  Gleissberg  occupies  this same 
position  among  those  who  developed  methods of ultralong-range  forecasting. 

Cycle No. 
n-2 n- 1 

2 
FIGURE 13 

Gleissberg's  method  presupposes  the  existence of an  80-year to  90-year 
cycle of sunspots,   the  main  features of which  were  discussed  in  Chapter  I,  
§ 8.  Contrary  to  Waldmeier,  however,  Gleissbergmaintained  that  successive 
cycles  are not  entirely  independent,  and  that  it is thus  possible  to  forecast 
the  next  successive  cycle  and  possibly  later  cycles as well. 

Since  it  is very  difficult  to  determine  the  epoch of beginning  and  the  epoch 
of end of an  11-year  cycle  (Waldmeier, 19391, Gleissberg  especially  concen- 

trated  on  the  epochs  when  the Wolf number is equal  to rWx. Let  us now 1 
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introduce  the  following  characterist ics of the  11-year  cycle  (they are all 
shown  in  Figure  13): 
wm, the maximum Zurich  smoothed  monthly  relative  spot  number; 

t,, the  reduced  length of the   r i s ing   par t  of the  cycle,  defined as the 
time  during  which  the  smoothed  monthly Wolf number  increases   f rom T-tyn 

to Wm (in  months); 

i 

t,, the  reduced  length of the  descending  part of the  cycle,  defined as 
the  time  during  which  the  smoothed  monthly Wolf number  decreases  

f rom W w  to Iwn (in months); 4 
t , ,  the  period of low activity,  defined as the  t ime  interval  between  the 

end of the  reduced  descending  part of one  cycle  and  the  beginning of the 
reduced  r ising  part  of the  next  cycle  (in  months). 

Next ,   on   the   bas i s  of the  Zurich  data,  let us obtain  the  values of these 
pa rame te r s  (see Chapter 11, Table  9).   From  the  lat ter,   the  values of w, 
tf), flj) and ti') may  be  computed,  namely  the  averages of four  successive 
values of Wa, t,, t,, and t l ,  respectively.   These  numbers  reflect   quite 
clearly  the  variations  in  t ime of the  main  character is t ics  of the  11-year 
solar  cycles.  Although  these  variations are not  particularly  regular,  and 
thus cannot  be  represented by exact  mathematical  formulas,  they are never- 
theless  useful  in  ultralong-range  forecasting.  Consequently,  ultralong- 
range  prediction  must  be  considered  to  be a probability  problem. 

If we  use  the  data  in  Table 9 to  calculate  the  quantities 

then w e  see that  these  quantities  do  not  oscillate  regularly  and  have a random 
distribution  about  their  average  values A= 55.4, 8 =  16.4,  and c = 77.4. 
Gleissberg  assumed  that   these  values  vary  only  sl ightly  when  the  following 
11-year  cycles are considered,  and so  for  his  subsequent  computations  he 
rounded  these  averages off to  55.5,  16.5,  and  77.5.  The  distribution of dif- 
ferences  between  the  actual  values of A,  B, and Cand  their   average  values 
is very  close  to  Gaussian,   with a m e a n   e r r o r  of 6 =  f 1.95.  Thus, h= 
"- 1 - ~ ~ - 0.36. 

Therefore,  the  probability  that  the  values of A ,  B, and Cwil l   d i f fer   f rom 
the  average  by no more  than 6 may  be  expressed as erf (0.368), where we de-  

Accordingly,  Gleissberg  (1952)  derived  the  following  probability  laws: 
I. the  probability  that ti4)+o.ZWg) for  any  two  successive  cycles lies 

11. the  probability  that t$*)-O0.4t~4)for these same cycles  lies  between 
between 55.5-8 and  55.5+6may  be  expressed as erf(0.368); 

16.5 -6 and  16.5+  6may  be  expressed as erf (0.368); 
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111. the  probability  that fc4)+0.8ty) for  these  cycles  lies  between 77.5-8 
and 71.54-8. may  be  expressed as e r f  (0.368). 

Since  none of these  probability  laws  establishes a correlation  between 
different  sets of cycles,  they  cannot  be  used  to  predict  future  cycles;  to 
do this,  an  additional law is required.  Also,  since  the  quantity t$4) enters  
into all three  laws,  it  was  convenient  to  investigate  the  variation of this 
quantity  from  one  cycle  to  the  next. If this  variation  obeys  the law of random 
e r r o r ,  then  the  probability  that  the  variation  amplitude is not greater  than 8 
may  be  expressed as erf (0.168). 

amount 8. This  probability  can  be  obtained by subtracting  the  probability 
that Lf)will change  by no more  than 8 - 0 . 5  from  the  probability  that  it  will 
change  by no more  than 8+0.5. Thus,  the  fourth  probability law states  that:  

It w i l l  be  useful  to know what  the  probability is that  tF)will  change  by  an 

IV. the  probability P(8)  that t!4) will  change by an  amount 8 is 
P (8) = erf (0.168 + 0.08) - erf (0.168 - 0.08). (4.4)  

Table 12 l ists   some  values of P(8)  and Q@). The  meaning of the  function 
Q@) will  be  explained  below. 

Funcri 

0.16 
3 0.14 0.94 
4 0.12 0.98 

on 

T A B L E  12 

s P @)and Q (b)(ac ording IO Gleissberg) 

Gleissbergused  these  four  probability  laws  to  predict  the  18th  cycle.  Since, 
according  to  Table 9. the  next  value of w)will  be  greater  than 91.7 (it is 
approximately 11 O ) ,  therefore  the  value of w n  for  the 18th cycle  will  be 
greater  than 145.  Since  the  sum of the  last  three  quantities in the  second 
column of Table 9 is 302.7,  the  sum of the  four  numbers WI for  cycles  15 
through 18 will  be  greater  than 447.7.  Consequently,  Wi)(for  cycles  15 
through  18)  should  be  greater  than 11 1.9,  that is, for  these  cycles w e  will 
have q4)'+0.2W> tL4)+22.5. On  the  other  hand,  it  follows  from  the  eighth 
column of Table  9  that  the  next  value of $?)will not exceed 33. Thus, W n  of 
the  next  cycle  will  be  greater  than  145 if  the  following  conditions  are  met: 

q4)= 33 and $4) + 0.2WY 55.5. 
$4)= 32 and + 0.2Wp 2 54.5, 
t!4)=31 and  t!r,+0.2W9)>53.5,  etc. I ( * )  

The  probability  that q4) will  change  by  an  amount 8 was  denoted as P (8). 
Since  the last value of  t:)was 33 and  since t!?)now decreases ,  P(8)  represents  
the  probability  that  the  next  value of tF)will  be 33-8. 

Let us now consider  the  probability  that fc4)+O.2Wg)wi1l be  greater   than 
55.5- 8. This  probability is the  sum of the  probabilities  that q)+Q.2W9 will 
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lie between  55.5-8  and 55.5 o r  between 55.5 and 00. The  first   probabili ty,  
according  to  law I, may  be  represented as e d  (0.368). while  the  second 
probability is l/* Therefore ,   the   probabi l i ty   that   t$4)+o.2~~)wil l   be   greater  
than  55.5-8 is given by the  function 

some  values  of which are listed  in  Table 12. 
Let u s  now calculate  the  probability  that  one of the  conditions ( 9  ) will  be 

met.  This  probability is given by the  expression x P(8)Q(&),  and if  we  take 

the  values of P(6)  and Q ( 8 )  from  Table 12 w e  find  that  the  probability  that W ,  
for  the  18th  cycle  will  exceed  145 is 86%. For such a high Wu, it   can  be 
expected  that  the  reduced  time t,  of the  r ising  part  of the  18th  cycle  will  be 
very  short .   The  average of all   the t,  for  cycles 1 through 17 is 35  months. 
The sum tr(15)+t,(16)+t,(i7)=98. If w e  assume  that   for  the  18th  cycle 
t,<32, then tr(15)+t,(16)+t,(i7)+t,(18)<130 and  consequently $*)<32. 

A s  shown  previously,  the  probability  that  the  next ti4) will  be  equal  to 
33-8 is P(8). Accordingly,  the  probability  that t?) will  not  be  greater  than 

m 

i S 0  

32 is 2 P(8),  and this s u m  is  obviously  equal  to  l-P(O).  Thus,  from 
W 

L.. 1 
Table 1 2  w e  find  that  the  probability  that  in  the  18th  cycle tr<32 months is 
91 7 0 .  

The  period of low activity tz of the  preceding  cycle is less  than  40  months.  
Also,   the  sum tl(15)+tz(16)+t,(17)=136, so that  taking  into  account our as- 
sumption  that tz(15)+t,(16)+ t~(i7)-j-tz(18)<i76 (that is, that  the  next  value 
of tj4)<44) we  will  obtain 

t:') - 0.4t:4)> tL4) - 17.5. 

By reasoning  which is analogous  to  that  for WI.. w e  find  the  probability 
that  the  next  value of tl will  be less than  40.  The  latter is given by the sum 

2 P (6 )Q(8+  1). Table  I2  may now be used  to  obtain a probability of 93 70 

that  the  period of quiet  activity  will  be  less  than 40 months. 

ac t e r i s t i c s  of the  18th  cycle: 

0 

8 4  

Let u s  now compare  the  predicted and observed  values of the  main  char-  

Predicted Observed 

w,. . . . . . . . . .  145 152 
Epoch of maximum . . . . . .  1948.3 1941.5 
t , .  . . . . . . . . . .  32 21 
t , .  . . . . . . . . . .  40 37 

The  predicted  maximum Wolf number  shows a very good agreement  with 
the  observed  value.  However,  the  values  obtained for  the  basic   t ime  char-  
ac t e r i s t i c s  of the  cycle  (especially  for I , )  cannot, as w i l l  be  shown  in  the 
following,  be  considered  very  successful. 

On  the  other  hand,  it is for  just   these  most  unreliable  predictions  that  
Gleissberg  claimed  the  highest  probability of forecasting  reliability.  Thus, 
it  may  be  concluded  that  the  probability of reliability of the  various  sunspot- 
cycle   parameters   c la imed by Gleissberg is, to a large  extent,  unjustified. 
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Sometimes  the  evaluation  may  even  lead  to a deceptive  picture of the re- 
liability of the  forecast .  . The  main  feature of Gleissberg's  method is i t s   u s e  
of the  properties  of  the  80-year  to  90-year  cycle.  However,  this  method 
bases  itself  on  the  80-year  to  90-year  cycle of the  parameter  t('jr, and  the 
variation of this   parameter  is not  regular  enough  to  permit a rel iable   extra-  
polation  to  the  next  cycle. 

Subsequently,  Gleissberg  (1951b)  modified  his  method  somewhat,  although 
the  modification, as will  be  shown  below,  was  not a fundamental  one.  Let 
u s  briefly  outline  this  modification  here,  without  entering  into  the  probability 
theory  involved  (since  the  latter  theory is not  pertinent  to  the  discussion), 
using  the  19th  cycle as an  example. In addition  to  the  previously  used  cycle 
character is t ics ,   Gleissberg  a lso  introduces  the  minimum Wolf number w,,, 
and  its  average  over  four  successive  cycles w:). This  quantity  may  be  cor- 
related  with '!) using  the  expression 

He next  defines  the  parameter 
a = 0.375t, + 0.005t:. (4.6) 

Then,  by  extrapolating  the ti4) curve,   Gleissberg  takes  the  extrapolated 
value of t y )  as 30 and  uses  the  third  formula of (4.2) to  find  that  for  the  18th 
cycle t(4)(18)=59.. Thus,  since t,(j5)+t,(16)+t,(17)=149, w e  have ty(18) = 
= 87. s i n c e  Wu(18) occurred  in  May  1947,  therefore t,(18) should  end  in 
August  1954.  Then  since  we  took t:4)(19)=30, we  find  from  the  second 
formula  that tj4)(19)=34. Also, t,(16)+t~(17)+tr(18)=121, so that t,(19)=15 
and  finally  from  (4.6) w e  have a(19)=7; thus  the  minimum  should  occur  in 
March  1955. 

If we take t$4)(19)=30, then  from t,(I6)+t,(17)+tr(18)=87 we  have 
tr(19)=33. Then t,(18)+t,(19)+tr(19)=135, and  thus  the  maximum of the 
19th  cycle  should  be  expected  in  August  1958.  It  follows  from  formula  (4.5) 
that W:)(l9)=8.3. Since  we know that Wm(16)+W,(i7)+W,(l8)=16.7, w e  
find  that W,(19)=16.5. Final ly ,   f rom  the  f i rs t   formula of (4.21, we  find  that 
w$)(19)=127.5, and since W~(16)+W~(17)+W~(18)=349.1 w e  have 
Wr(19) = 160. 

Gleissberg's  method  also  gives t,(lg). From  the  third  formula of (4.2), 
w e  find  that ty)(19)=59.3. Since t,(16)+t~(17)+t,(18)=161, w e  have 

t,(19)=76, so that-" should  be  expected  in  January  1965. 
There are now enough  data  available  to  evaluate  the  accuracy of Gleiss- 

berg's   forecast   for  the  19th  cycle.   I t   should  be  mentioned  that  a m o r e  re- 
fined  forecast  for  this  cycle,  made  later by Gleissberg  (1953)  using a dif- 
ferent  method, is much  inferior  to  the  one  just   described. For example, 
according  to  this  later  forecast ,  Wr(19)=130. It  should  also  be  kept  in 
mind  that  Gleissberg  used  smoothed  monthly Wolf numbers  and  the  epochs 
of extrema  corresponding  to  these.  

The  following  data  provide a comparison  between  the  predicted  and  ob- 
served  character is t ics   for   the  19th  cycle:  

i 
4 

Predicted  Observed 

Epoch of minimum . . . .  1955.2 1954 5 
w, . . . . . . . . .  16.5 3.6 
Epoch of maximum . . . .  1958.7  1958.1 
WM. . . . . . . . .  160 202 
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The  epochs of extrema  were  predicted  with  satisfactory  accuracy,  but  the 
forecast   cycle  height was  much  too  low. 

Finally, let us consider  the  errors  involved  in  forecasting  for  11-year 
cycles.   Since  the  variation of t$?)is not  actually  regular,  and  since it is 
just   this  parameter upon  which  the  entire  forecast is based,  therefore  very 
s m a l l   e r r o r s  in t'," will   lead  to   qui te   large  errors   in   the  other   predicted 
parameters .  An e r r o r  of f 1 in l!?) results  in  the  following  errors: 

t,- +4, wr- f20, t*- +IO, t / -  f5 ,  0 -  *4, W" *3. 
One  other  important  shortcoming of Gleissberg's  method  and of its modi- 

fication is that  it  takes  virtually no account of the  properties of the  22-year 
cycle  and of the  supersecular  variation of solar  activity.  This  method  thus 
lacks  internal  control  and is practically  quite  one-sided. A s  indicated  previ- 
ously,  the  probability  evaluations of this  method  are  very  deceptive,  and  thus 
cannot  replace  internal  control.   Nevertheless,   Gleissberg's  method  can 
s t i l l  be used  successfully  in  combination  with  other  methods,  and it has not 
lost  its practical  significance. 

4. The  Method of 01' 

In  1949 01' developed  a  method  for  ultralong-range  forecasting  which is 
based  on  the  assumption  that  the  main  periodicities  governing  the  develop- 
ment of solar  activity  are  the  11-year  cycle,   the  22-year  cycle,   the  80-year 
to  90-year  cycle,  and  the  supersecular  variation (Ol', 1949a,  1949b).  Let 
u s  now consider  this  method  as  i t   applies to the  19th  cycle. 

The  method of 01'  uses  the  following  parameters of the  11-year  cycle: 

Z W ,  the   sum of the  yearly Wolf numbers  for  the  cycle; 
x l W ,  the s u m  of the  yearly Wolf numbers   for   the  r is ing  par t ;  
ZW,  the  sum of the  yearly Wolf numbers  for  the  descending  part; 

W w ,  the  maximum  yearly Wolf number;  

t ,  the  length of the  r ising  part  (in years ) ;  
t, the  length of the  descending  part  (in  years); 
T ,  the  duration of the  cycle  (in  years). 

The  superscr ipt  (4)will indicate  the  srnoothingof  a  parameter  over  four  cycles. 
The point of departure  for  this  method is the Wj) curve  shown  in  Figure 

14. An extrapolation of this  curve,  taking  into  account  the  supersecular 
variation  (the  dashed  lines  in  Figure  14),  gives a value of w ( = 1 2 7 f o r  
1943.  Thus,  since W ~ ( 1 6 ) +  W~(l ' l )+W~(I8 )=344 ,  we  have  WM(lS)=164. 

Now let u s  turn  to  the  other  parameters of the  11  -year  cycle.  The 
quantities Z W  and Wr are related by the  formula 

2 W = -103 + 8.60Wa- 0.0236w'r. (4.7) 

Since  we know that W~(18)=152, w e  can  use  formula ( 4 . 7 )  to  find z W ( 1 8 ) =  
= 660. Then,  since %W(18) = 279, we  have Z,W(18)=381. 

formula for the  l inear  regression  between wp and - 
In order  to  obtain  t e total  duration TI, of the  cycle,  let us introduce  the 

P a .  
f .  
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F o r  Wg)= 112,  we  obtain 7- X@@ - 52.6,  that is [F),= 69.4  and TI,= 9.5. 

Thus,   since t,=3.1, we  have ~c,,=Tl,--tll=6.4. 
The  value of T~~ can   be  found  by  other  methods  .The  linear  regression  between 

XlW(4)* 
ZW(‘)and - may  be  expressed by the  formula 

1 z W(O = 0.0737 2 Wrr, + 3.0. (4.9) 

For  cycles  15  through  18, 2w(4)= 531, so  that  =42.0.  Thus,  we 

obtain (F),? 52.1  and T]8= 7.3. 

lW(” 

As noted  in  Chapter I, Waldmeier gr,ve a formula  for   the  regression 

between  Q=-and Wr. For even  cycles  this is t 

15.64 - 5.81 log W x  
3.0+ O.O3W, . (1.7) 

Thus ,   fo rw~=l52 ,   we   ob ta in  Q=  0.39,  that i s ,  T ~ =  7.9. 

duration of the  18th  cycle is then 
Let us take  the  average of these  values  for t, namely T ~ =  7.2.  The  total 

T = 3.1 + 7.2 = 10.3, 

that  is,  this  cycle  should  end  in  the  middle of 1954.  It turned out that  this 
forecast  of the  epoch of minimum  for  the  19th  cycle w a s  excellent. 

19th  cycle.  Previously  we  obtained w,(l9)= 164,  and  from  regression 
equation  (4.7)  we  obtain zW(19)= 670.  The  following  equation  for  the r e -  
gression  between XW for  an  evencycle and the  following  odd  cycle  (Gnevyshev 
and  01’.  1948)  may now be  used: 

Let u s  now consider  the  direct  prediction of the  basic  parameters of the 

Z W o d d  = 0.844 x W e v e n +  152. (4.10) 

For I]W(18)= 660,  we  find  that (19)= 709.  The  average of the  different 
values  obtained  for xw(19)  is 

_”” - 
”” 
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The  quantity x2W(19)  is found  using  the  parabolic  regression  formula 

zZW=13+0.21 ~ W + O . O 0 0 5 3 6 ( ~ ~ -  (4.11) 

F o r  x W ( 1 9 ) =  690,  we  obtain z w ( 1 9 ) =  413. The  following  formula  for  the 
regression  between  z2w(4fand  Xw4)can  a lso  be  used:  

= 0.707 - 96. (4.12) 

Since  for  cycles 16 through  19 Y V C ( ) =  592 therefore  we  have 2w4)= 322 
andxrW(19)=  358.  The  average  value is s w ( 1 9 ) =  385, so that  we  obtain 
x l W ( 1 9 ) =  305. 

F o r  w ' ! =  127,  we  have E= 59.5,  that is (F) = 72.6 and T =  9.5.  In 

addition,  formula  (4.9)  gives 7 2w(4)- - 46.6,  that is, 56.0  and 

TIP= 6.9. Consequently, t,,= 2.6 and Q= 0.38,  which is close  to  the  values 
obtained  using  Waldmeier's  equation  (1.8)  for  odd  cycles. 

Thus,  01'  predicted  the  following  values  for  the  basic  parameters of 
the  19th  solar  cycle : 

The  duration of the 19th c cle can  be  determined  using  formula (4.8). r 
T 19 

W " - 164; m = 6 9 0 ;  C,W=305;   SW=385;  t ~ 2 . 6 ;  
T = 6.9; T = 9.5. 

Later,   after  taking  into  account  more of the  descending  part of the  cycle,  
01 '  (1954)  obtained  the  following  improved  forecast  for  the  19th  cycle: 

W,= 164; ZW = 730; 2 ,W = 278; Z W  = 472; t = 2.4; 
T = 7.2; T = 9.6. 

There  are not  enough  data as yet  for  an  evaluation of a l l   these  forecasts .  
However,  it is interest ing  to   compare  the  forecast  and  observed  values of 
the  quantities known so  far: 

w,=190;  21w=374;  t=3.4. 

The  f i r s t   fo recas t  w a s  somewhat  more  successful,   the  highest   deviation 
being  observed  for  the  length of the  r is ing  par t  of the  cycle.  Interestingly 
enough,  when  the  descending  part w a s  taken  into  account,  the  forecast w a s  
not  improved  using  this  method (as was  also  the case in  the  preceding  sec- 
t ion,   using  Gleissberg's  method).   This  stresses  once  again  the  fact ,  
pointed  out  in  Chapter I ,  that   for an  11  -year  cycle  the  length of the  r ising 
par t  of the  cycle is of decisive  significance. 

Finally,  let u s  discuss  the  statist ical   justif ication of the  regularit ies 
made   use  of in  the  method of 01' .  If we assume that  in  this case we  have 
only  small  samples,  then  the  significance of the  correlation  coefficients 
can  be  evaluated by means  of Romanovskii 's   cri terion (1947): 

I r i w > / 3 .  (4.13) 
01' obtained  the  following  correlation  coefficients : 
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1; It is evident  that  the  first  three  coefficients  definitely  satisfy  Romanovskii's 
condition  and are thus  significant.  However,  due  to  the  smallness of n (n=lO), 
the  validity of the last coefficient  cannot  be  inferred  using  Romanovskii's 
condition. 

The  method of 01' is superior  to  Gleissberg's  method,  f irst ,  by virtue 
of its  relative  simplicity  and,  second,  because of i ts   internal  control.   The 
la t ter   factor  is particularly  important,   since  i t   increases  considerably  the 
reliability of the  forecast. 

J 5. Methods  Related  to  the  Properties 
of the  22-Year  Cycles 

Kopeck3  (1950b)  proposed  two  methods,  both  related  to  the  properties 
of the  22-year  cycles,  for  the  ultralong-range  forecasting of Wolf numbers. 
The   f i r s t  of these  methods  is  associated  with a property of the  22-year 
cycles  which was  established by Gnevyshev  and 01 '  (19481, namely  that 
there   exis ts  a close  correlation  between  the  characterist ics of the odd  and 
even  11-year  cycles  constituting a 22-year  cycle  (see  Chapter I ,  § 7).  

F o r  the  years with  the  best  correlations  between  the Wolf numbers  for 
the  even  and odd cycles,  Kopeck9  (1950a)  calculated  the  following  coeffici- 
ents  for  conversion  from  the  relative  spot  numbers  for  even  cycles  to  those 
f o r  odd cycles:  2-1.10,  3-1.30,  4-1.30,  5-1.20,  where  the  numbers 
preceding  the  dashes  represent  the  number of the  year in  the  11-year  cycle, 
measured  from  the  epoch of minimum.  Accordingly,  the  correlation  coef- 
f ic ients   are:   for   year  2, + 0.521  f0.186;  for  year 3, + 0.686 f 0.135; for  
yea r  4, +0.971*0.014;  and  for  year  5,  +0.788+0.097. Kopeck: (1950b) 
used  these  correlations  to  obtain  the  following  yearly Wolf numbers  for  the  19th 
cycle:   for   year  2, 123.6;  for  year  3, 208.5;  and for   year  4, 165.3. If we 
take  into  account  that  the  epoch of minimum of the  19th  cycle  occurred  in 
1954,  then  the 2nd year  of the  cycle w a s  1956. And so this  forecast  was 
quite  successful.  The  height of the  maximum of the  19th  cycle w a s  de- 
termined  with  an  error of only  10%. 

ficients,  in  which  case we  obtain:  for  year 2, 102; for   year   3 ,  197;  and for 
year  4, 167.  Thus  this  method,  which  appears  at  first  glance  to  be so  
primitive,  gives a much  improved  accuracy, a value of W,= 197 in com- 
parison  with  the  observed  190. 

The  second  method  proposed by Kopeck$ is based on the  80-year  to 
90-year  variation  in  the  principal  characterist ics of the  22-year  cycles. 
Let us introduce  the  following  parameters  describing a 22-year  solar  cycle:  
EWM. the  sum of the  maximum Wolf numbers  of the  Hale pa i r  of 11  -year 
cycles;  and XW,, the sum of the  yearly  relative  spot  numbers  for  the 2 2 -  
year  cycle.   These sums are  given  in  Table  13. 

indicating a quite  distinct  80-year  to  90-year  cycle  in  these  parameters as 
well.  Therefore a third  maximum  may  be  expected  in  the 9th 22-year  cycle. 
If we  assume  that  the  values of m M a n d  xw, in  the  9th  cycle wi l l  be  equal 
to  their  averages  in  the  1st and  4th Hale  cycles,  then we can  estimate  the 
height  WJi9)of  the  19th  cycle.  Observations  give W, (is)= 151.6  and 

Let us  now try  to  determine  these  numbers  using  the  conversion  coef- 

The  table  shows  that two maxima of mN and ma occur  in  cycles 1  and 4, 
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Table  13  gives zw,= 261.5, so that  we  obtain w,(19)= 110. Analogously, 

observations  give zW,(18)= 702  and  Table  13  gives xw,= 1267, so that  

me (19) = 565. 

by the  regression  equation 

19 

l8 

There  is a fairly  close  correlation  between ma and W,. as determined 

xWe=4.65W,+ 62.5. (4.14) 

This  relation  gives w,(i9) = 108.  Obviously,  Kopeck5's  forecast  according 
to  the  second  method is rather  unsuccessful.   This  may  be  due to the fact 
that  this  method  does  not  take  into  consideration  the  supersecular  variation 
of solar  activity,   which  affects mx and x W a  to some extent, as Table  13 
shows.  Moreover,   the  cyclic  oscil lations of ZW, and XW, over  many   yea r s  
are less  regular  than  the  variation in wp- 

T A B L E  1 3  

Parameters of 22-year  solar  cycles  (according to Kopecky) 

Number of 
Hale  cycle 

-2 
-1 

0 
1 
2 
3 

100.9 
115.0 
119.3 
260.5 
179. I 
116.8 

416.7 
898.3 
903.3 

1110.4 
1137.3 
632.6 

1364.1 
1178.4 
854.6 
822.4 

1017.2 

Chvojkova  (1952)  plotted  two  curves  showing  these  variations  over  many 
years,   for  the  even  and odd  11-year  cycles  separately.   These  curves  show 
different  cyclic  oscillations:  the  odd-cycle  curve  attains a maximum  once 
every 80 years,   while  the  even-cycle  curve  attains  one  every 55 yea r s .  
When  the  two  curves are in  phase,  they  have  high  maxima  and  deep  minima, 
whereas  otherwise  the  maxima are lower  and  the  minima are shallower.  
The  curves come in  phase  once  every  176  years.  Analogous  variations 
were  observed by  Chvojkova  for 2T (the  duration of the 22 -year  cycle),  T, 1, 
and !.. By extrapolating  these  cyclic  variations  to  1957,  Chvojkovaobtained 
the  following  values of WM for the  19th  through 22nd cyc les  : 100 for   cycle  19; 
30 for   cyc le  20; 50 for cycle 21; and  120 for   cycle  22. Chvojkova's  fore- 
ca s t  for  the  height of the  19th  cycle is obviously  unsuccessful,  and it is 
quite  possible  that  this is the   case   for  all the  other  cycles  computed by he r .  
A s  01'  (1954)  has  indicated,  this is to a considerable  extent  due  to  the fact 
that  the  cyclic  variations  observed  by  Chvojkova are much  more  compli-  
cated,  and at the  same  t ime  much less reliable,  than  the  cyclic  variation 
of W i  over  many  years  which  was  established by Gleissberg.  

9 6. Eigenson's  Method 

Eigenson  (1955)  has  proposed a forecasting  method  based  on  the  proper- 
t i es  of Sporer's  law.  Eigenson  and  Mandrykina  (1954)  have  shown  that  there 
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exis ts  a correlation  between  the  average  latitude &.of the  sunspot  zone  in 
the  epoch of minimum,  and  the  maximum Wolf number W,for the  given 
cycle.  If the 1867 - 1876 cycle is omitted,  then  the  Greenwich  data  for  the 
sunspot  latitudes  and  the  Zurich  relative  spot  numbers  give a correlat ion 
coefficient  r~H,w,=+0.73f0.12. 

half prior  to  the  beginning of this  cycle as defined  by  the  Schwabe-Wolf 
law.  Therefore,  it is possible  to  predict  the  height of the  next  cycle a 
y e a r   o r  a y e a r  and a half before  i ts   epoch of minimum. In order   to   do  
this,  the  following  regression  equation  can  be  used: 

The first spots of a new 11-year  cycle  appear a y e a r  o r  a y e a r  and a 

W, = 6.4qm - 80.17. (4.15) 

In 1955  Eigenson  used  this  method  to  forecast  the  height of the  19th  solar 
cycle.  He used  the  anomalously  high  latitude of the  first  high-latitude  one- 
day  group  observed  at  the  Mount  Wilson  Observatory by Babcockon  13  August 
1953  (that i s ,   more   than  a half-year  before  the  epoch of minimum of the  19th 
cycle).  This  group  was  observed  simultaneously  at  the  McMath-Hulbert 
Observatory,  and its latitude  was + 52". 

tive,  conclusions  concerning p,,, and if a correlation  coefficient of r = +  0.73 
can  be  considered  high  enough  for  forecasting,  then  it  follows  from  the  fore- 
going  that  the  19th  solar  cycle  should  be  much  higherthanthe  18th.  Eigenson 
used  equation  (4.15)  to  obtain a rough  estimate of the  height of the  19th  cycle, 
namely w~ 3200.   This   es t imate   turned  out  to be  very  close  to  the  actually 
observed  maximum Wolf number,  the  difference  being  only  about  5%.  How- 
ever,   this  success  should  be  attr ibuted  to  the  extreme  care  taken  by  the 
author  in  the  analysis of his  data  and  to  his  ability  to  guess a reasonable 
lower  limit  for  the  figures  which  he  obtained. 

Eigenson's  method  should  really  be  classified as a  qualitative  method, 
and  in  this  respect  it  can  only  be  used  in  conjunction  with  methods of u l t r a -  
long-range  forecasting  which  give  quantitative  estimates.  The  main  dis- 
advantage of this  method is the  obvious  arbi t rar iness  of the  assumption 
that  the  latitude of the  f irst   spot  group  reflects  to  some  extent  the  average 
latitude of the  spot  groups  during  the  epoch of minimum.  Moreover,   the 
regression  used is very  sensit ive  to  changes  in q,,,, so  that a relat ively  small  
change  in  this  latitude  can  cause a considerable  variation  in  the  estimate  for 
the  maximum Wolf number.  For example, i f  in  the  epoch  preceding  the 
minimum  the  latitude of the  high-latitude  spot  groups is 40", a value  which 
is clearly  exaggerated,  then  we  have W M =  176. 

If the  f irst   spot  group  can  be  used as a basis  for  certain,   however  tenta- 

5 7.  Schove's  Method 

The  method of ultralong-range  Wolf-number  forecasting  suggested by 
Schove  (1955) is somewhat  unique.  This  method is based  on  the  construc- 
tion of a series of maximum Wolf numbers,   expressed  in  arbitrary  units,  
and a series of  epochs of ex t r ema  for the  11  -year  solar  cycles,   both series 
extending  from 200 13. C. until  1954.  The  necessary  data  were  obtained 
f rom  the   ava i lab le   records  of sunspots  and  polar  auroras.   Fritz  has  con- 
s t ructed a s imi l a r  series using the  data on hailstorms  and  high-yield  crop 
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years  as  cycle  indicators,   but  Schove  considers  the  use of such  data  un- 
justified.  Moreover,  he claims that  the  phase of the  polar-aurora  cycle 
lags  behind  the  sunspot  cycle  somewhat. 

sumptions : 

than 16 yea r s ;  

Schove  bases  the  compilation of his  basic  table  on  two  fundamental as- 

1) the  t ime  between  successive  maxima is not less than 8 and  not m o r e  

2) 9 sunspot  maxima  occur  every  100  years.  
That  this is true  has  been  reliably  established  for  the  period  from  1515 

A .  D. until  the  present.  The  most  reliable  data  for  the  extrema of the  11- 
year   so la r   cyc les  are those  collected  after  1749.  These  data  were  classi-  
f i e d  into  30-year  groups of longer  11-year  cycles  (such as those  with  mid- 
points  in  1650/1655,  1720,  1805/1810,  and  1885/1890)  and  intermediate 
groups of shorter   cycles   (such as those  with  midpoints  in  1685,  1760/1765, 
1845,  and  1935).  The  average  length of seven  cycles,   at   least   over  the 
las t  two  and a half centur ies ,  is between 10 and 12 years.   The  phase of 
an  individual  11  -year  cycle  can  easily  be  determined  from  the  residues 
which a r e  obtained  from  the  epochs of minimum  for  the  period  since  1700, 
using  multiples of 11.  During  the  last  three  centuries a residue of 5 was 
typical.  The  phase of a maximum  near  the  transit ion  from  one  century  to 
the  next,  however, is ambiguous. 

The  main  results of Schove's  studies  are  given  in  Table  14, in which  the 
cycles are listed  as  decimal  fractions.   In  this  century  the end y e a r s  of the 
solar  cycles  approximate  the  following  pattern: 00,  . l l ,  . 22 ,  . 3 3 ,  . . . .  .88, 
.99/00  and so they a r e  denoted  correspondingly as .O, . l ,  .2, .3, .... .8, 
. O .  The  intermediate  minima  are  denoted by the  decimal  fractions  .05,  .15, 
.25, . . . .  .85,  .05.  In  earlier  centuries  the  maxima  followed  the  rule of 
11  -year  periods.  Data  which  cannot  be  considered  reliable  are  placed  in 
parentheses.  When  the  epoch of minimum  was  uncertain,  the  probable 
e r r o r  w a s  taken  as 4. A probable   error  of 3 corresponds  to  cases of am- 
biguous  interpretation. 

sed  as  follows: up to  800 A. D. they  ranged  from 5 to 15 (instead of f rom 
-6  to +4), while  after  800 A. D. they  ranged  from 1 to  13.  The  intensity of 
the  11-year  cycles w a s  evaluated  on  the  basis of historical   sources;   an 
arbi t rary  qual i ta t ive  scale  w a s  used,  with a number of gradations  sufficient 
to  characterize  the  cycle  precisely.  The  intensity  symbols  have  the  follow- 
ing  meanings : 

In order  to  avoid  negative  values,  the  residues  in  the  table  were  expres- 

Annual Wolf 
number 

sss = exceptionally strong . . .  
ss = very strong (150,  140. 140) . 

s = strong (110, 130. 120. 110) . 
M S  = moderately  strong  (100, 100). 
M = moderate (90, 90, 80) . . 

W M  = moderately  weak (70) . . .  
W = weak (60, 60) . . . . .  

WW = very  weak (50, 50) . . .  
www= exceptionally weak . . .  

X = unknown 

. . . .  >160, 

. . . .  145. 

. . . .  120, 

. . . .  100. 

. . . .  85, 

. . . .  70. 

. . . .  60. 

. . . .  50, 

. . . .  45. 

Here  the  figures  in  parentheses  correspond  to  the  maximum Wolf numbers 
for  the  11-year  cycles  since  1750. 
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Number 
of maxi- 

mum 
~ 

I 

-6.45 

-5.  I5 
-5.25 

-5.05 
-4.85 
-4.75 
-4.65 
-4.55 
-3.85 
-3.75 
-3.65 
-3.55 
-3.45 
-3.35 
-3.25 

-2.75 
-2.85 

-2.65 
-255 
-2.45 
-2.35 

-2.15 
-2.25 

-2.05 

-1.75 
- 1.85 
-1.65 
-1.55 
-1.45 

-1.25 
-1.35 

"1.15 
-1.05 
-0.85 
-0.75 
-0.65 
-0.55 
"0.45 
-0.35 
-0.25 
-0.1 5 
-0.05 
+0.05 

Year of 
maxi- 
mum 

- 2 

-648 
-522 
(-512) 
-501 

-481 
-471 
-461 
-393 

(-491) 

. . .  . . .  . . .  
-349 
-340 

(Li9i) 
(-283) 
-272 
(-261) 
(-249) 
-236 
-223 
-214 
-205 

-1 82 
-192 

-172 

(-149) 
-163 

-1 35 
-1 25 
-113 

- 91 -104 

(- 82) 

- 53 
- 42 - 27 
- 16 

8 

(- ;;) - 

(- 5) 

- 
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mor 

- 
s - 

3 
3 
4 

4 
2 

2 
2 

3 
2 

. ,  . ,  
i '  

i '  
3 

4 
3 
4 
4 
3 
3 
2 
2 
2 
3 
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3 
4 
3 
3 
2 
2 
2 
4 

2 
3 

2 
3 
2 
3 

4 
4 

lesidu 

- 
I - 

8 
12 
1 1  
11 
9 

7 
8 

6 
7 . . .  . . .  . . .  
5 
7 

9 
8 
6 
6 
7 

i l  
9 

9 
7 
2 
7 

4 
6 

10 
(7) 

10 
9 

8 
9 
I 
6 
5 
3 
3 
7 
7 
7 

. . .  

(8) 

Esti- 
natec 
tiolf 
m b e  

5 - 

Aaximun 
intensity 

6 

W ?  
(SY 

.(i)?- 
W-" 
S 
S 

S 
S . . .  . . .  . .  d 
S . . .  . . .  
' i '  

i 
. . .  . .  

S 
X 

S 

W M  
S 

WM 
S 
W 

MS 
M 

S 

ss 
S 

H 
W Y  
ss 
YS 
ss 

W M  
S 

W M  
Y or A 

- 
Years 
after 
reviou 
maxi- 
mum 

1 
- 
- 
. . .  
'(lb,' 
(11) 

10 
10 

'19 

. . .  . . .  . . .  . . .  . . .  
9 . . .  . . .  . . .  . . .  . . .  . . .  . .  
i3 
9 

13 
9 

10 
10 
9 

(14) 

12 
9 
13 
(9) 

9 
9i 
15 
1 1  

(; 

mum 1 
8 9 1 10 

I I 

5 7 (-527) 
. 3 (-653) 

4 (-516) 

4  -474 3 
3 -486 5 
4 (-496) 5 
7 (-505) 4 
7 

4 2 -465 
6 

. . (-375) . . 3 -386 . . 3 -397 

5 -354 2 
. (-365) . . 

4 -344 1 . . -332 2 . . (-298) 2 . 1 (-288) (5) 

3 -243 i 

1 -277 . . 
2 (-254) 
1 -266 

7 -230  4 

5 -210 2 
5 1-219 I 4 

4 0 -i67 
(5) 4 -141 6 

5 -129 4 

2 (-154) 

6 -119 4 
4 "108 

- 9 6  5 
4 
4 

4 
1 (- 77) 5 
3 (- 8 6 )  

7 

-1 - 46 4 
"2 - 58  5 
"2 - 69 

5 

(3) 3 

2 -221 5 
2 (- 32) 

7 9  

. . . . . . . . .  



T A B L E 14 (continued) 

cL_ 

1 

c__ 

0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
1.05 
1.15 
1.25 
1 .35 
1.45 
1.55 
1.65 
1.75 
1.85 
2.05 
2.15 
225 

2.45 
2.35 

2.55 
2.65 
2.75 
2.85 

3.15 
3.05 

3.25 
3.35 
3.45 
3.55 
3.65 
3.75 
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An examination of the  data  for  the  period  since  1610  shows  that  the 
minimum  generally  precedes  the  maximum by 4 yea r s  if the  maximum is 
s t rong or very  s t rong,  by 5 yea r s  if the  maximum is moderate or moder-  
ately  strong, and by 6 yea r s  if the  maximum  is  weak.  The  intervals of 
time  elapsing  from  minimum  to  maximum,  for  the  period  since  1850,  satisfy 
the  formula 

t=7".03W,, (4.16) 

where w x  is the  yearly  maximum Wolf number.  The  minimum  following a 
weak  maximum  is  generally  separated  from  it by about 6 y e a r s ,  while  the 
minimum  following a strong  maximum  is  separated  from  i t  by about 7 yea r s .  

It  is  interesting  that  the  table  also  implies  the  existence of the  80-year 
to  90-year  cycle, not  only for the  period  considered by Cleissberg  but  also 
for a much  earlier  t ime.  The  sunspot  cycle is longer in  weak  (according 
to  the  polar  auroras)  periods  and  shorter in  active  periods. 

The  average  sunspot  cycle  over  about 500 years  ranges  between 1 I .03 
and  11.14 years .   Since 200 B. C .  there  have  been  an  average  of 90 to 91 
cycles  per  millennium.  The  positions of the  minima of the  11-year  cycles 
are  fairly  well   approximated by  the  arithmetic  progression  1932-155. 2 n, 
w h e r e  R is  the  cycle  number.  This  formula  makes  it  possible  to  compute 
the  epochs of minima  which are not  given  by  observational  data.  In  addi- 
tion  to  the  80-year  to  90-year  cycle,  the  variations  in the  lengths of the 
11-year  cycles  since 1510  can  be  represented  quite wel l  by a long  160- 
yea r  to 170-year  cycle.  The  average  cycle  during  the  periods  1560-1590, 
1750-1790,  and  1900-1950  was 10 yea r s  long, while  that  during  the  periods 
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1600-1670  and  1780-1820  was  12  years  long.  This  alternation in cycle 
length  follows  indirectly  from  the  200-year  cycle of polar-aurora  activity.  

ized by two  maxima  with a short  quiet  period  in  between. The midpoints 
of  the  maxima  about  the  short   quiet   periods  are as follows:  1755, 1555. 
1350,  1160,  955,  755,  540,  340, . . . , the  period  between  the  two  basic 
peaks  being  about 50 yea r s .  

A.  D. may  be  expressed  as  follows: 

Per iods of increased  auroral   activity  in  even  centuries are charac te r -  

The  average  behavior of the  11-year  sunspot  cycles  starting  with 900 

Years after 
Year  Residue  Intensity  preceding 

maximum 

01 
11 
21 
38 
50 
61 
12 
82 
91 
03 

W ... 
S 10 
S 10 
S 11 
I 12 
S 11 
ss 11 
S 11 
W Y  8 
W M  12 

This  table  can,  provided  the  80-year  to  90-year  cycle is taken  into  account, 
be  used  as  a key for  the  prediction of future  11-year  cycles.  Schove  has 
also  discovered  evidence  for  cycles  with  durations of over 200 yea r s ,  in 
particular  a  554-year  cycle,  but  he  does not claim  that  these  cycles  actually 
exist.  It  should  be  noted  that  the  554-year  intervals  occur  between  the  high- 
est-intensity  maxima of solar  activity. 

Thus,  Schove's  method  for  ultralong-range  forecasting is suitable  for 
even  centuries  only  and  does  not  take  into  account  cycles  longer  than  80 
or 90 years.   Schove  used  his  method  to  forecast   the  main  characterist ics 
for   cycles  19  through 25. It is true  that   for  the 19th  cycle  Schove  followed 
Gleissberg (1944b)  in assuming  that  this  cycle  should  be  very  strong, so 
that  he  dated  the  central  maximum  at 1970 rather  than  1960.  However,  with 
all  its  shortcomings,  Schove's  method is of unquestionable  interest  simply 
because of the  vast  amount of data on which  it is based.   There  is ,  of course ,  
a certain  amount of uncertainty  involved  in  the  historical  data  used,  but  this 
st i l l   does not justify  a  total  rejection of these  data,   especially  after  the  very 
careful  analysis  made by Schove. 

§ 8. Forecas ts  of Sunspot  Areas 

So f a r  w e  have  just  considered  the  forecasting of Wolf numbers.  Until 
very  recently, no methods  for  forecasting  the  sunspot areas had  been  de- 
veloped,  and  the  first  steps  in  this  direction  were  taken  only  in  the  last 
few years .   Just   as   for   the Wolf numbers   during  the  f i rs t   years  of develop- 
ing  prediction  methods,  most of the  attempts  made  to  develop  methods  have 
been  directed  toward  ultralong-range  forecasting of sunspot  areas.  
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It should  be  noted first that,  since  the  data  available  for  the  spot-group 
areas only  cover  seven  complete  11  -year  cycles,  most of the  properties 
described  should  be  considered as purely  qualitative. In th i s   case ,   there-  
fore,  high  accuracy of the  forecasts is not  to  be  expected. 

Two methods  have  been  worked  out  for  spot-group-area  prediction,  that 
of Xanthakis  (1959)  and  that of Bezrukova  (1958).  Since  the  method of 
Xanthakis  has  never  been  applied  in  practice,  except  for  back  calculations 
over  previous  cycles,   therefore it will  not  be  considered  in  detail  here  and 
i t  w i l l  only  be  discussed  briefly  at  the end of the  section. 

Bezrukova's  method is based  on  the  asymmetry of sunspot  activity  in  the 
northern and southern  solar   hemispheres ,  a factor  which w a s  discussed  in 
detail  in  Chapter  I,  S 9. In practice,   for  the  prediction of all the  character  - 
is t ics  of the  11-year  solar  cycle,  this  method is applicable  only  to odd 
cycles  (Zurich  system).  This  method  will now be  considered  using  the  fore- 
cast of spot areas for  the  19th  cycle as an  example. 

Let  us  recall  that,  according  to  Bezrukova,  during  any  given  cycle  the 
cycl ical   curve is single-maximum  in  one of the  solar  hemispheres and  de- 
formed (or double-maximum)  in  the  other.  Therefore,  the  following  char- 
acter is t ics  of the  11-year  cycle  for  the  spot-area  index  can  be  determined: 
the  height of the  single  maximum and the  height of the  corresponding point 
on  the  double-maximum  curve. In o rde r  to  determine  the  sunspot-group 
area  in   the  year  of maximum of the  single-maximum  cycle,  let u s  make  use 
of the  correlation  between  the  spot  areas  in  the  year of the  f i rs t   maximum 
of a double-maximum  even  cycle and the  spot  area  in  the  year of maximum 
of a single-maximum odd cycle.  Table  15  gives  the  corresponding  data  for 
cycles 12 through  18. 

T A B L E  1 5  

Spot  areas for solar  hemispheres in  the  epochs of extrema of the  11-year  cycles 
(according  to Bezrukova) 

Cycle 
number 

12 
13 
14 
15 
16 
11 
18 
19 

~~~~ ~ - 

First maximum of 
double-maximum 

cycle 

500 
607 
400 
318 
663 
678 

1127 

~ .. ~ ~~~ 

single-maxi-  Ratio 
mum  cycle 

1.882 
94 1 

750 I 1.977 
860 

1311 
679 I 1.986 

(2250) 
. 1645 ~- I 

The  table  indicates  that,  for all three  pairs  of cycles  designated  in  the 
fourth  column of the  table,   the  spot  area of the  single-maximum odd cycle 
is almost  twice as great  as the  spot area of the  f i rs t   maximum of the  pre - 
ceding  double-maximum  even  cycle. If we take  into  account  the  gradual 
increase of this  ratio,  then  we  see  that  for  the  19th  cycle  the  spot-group 
area in  the  year  of maximum of the  single-maximum  cycle  can  be  expected 
to  be 2250 millionths of a solar  hemisphere  (m. s.  h.). If we  take  the  second 
differences  into  account, we obtain 2297 m .  s. h. 
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W e  next  plot  the  spot area of the  single-maximum  cycle  in  the  year of 
maximum  as  a function of the  spot area in  the  year  of the  f irst   maximum of 
the  double-maximum  cycle.  The  graph  shows  that  the  relationship is l inear  
for  the  three pa i r s  of cycles. If on  the  straight  line  we  read off the point 
corresponding  to 1127 m.s.h.,  then  we  obtain  1820  m.s.h.  Then,  by  taking 
the  average of the two values found for  the  spot  area  in  the  year of maximum 
of the  single-maximum  cycle, w e  obtain  2050  m.s.h. 

In order  to  f ind  the  spot area of the  double-maximum  cycle  in  the  year of 
maximum of the  single-maximum  cycle,  let u s  refer  to  Table 16. This  table 
shows  that  the  ratio  between  the  spot  area of the  double-maximum  cycle  and 
that of the  single-maximum  cycle  in  the  year of maximum of the  single- 
maximum  cycle is variable.  This  ratio  apparently  follows  a  44-year  cycle. 
If we  take  this  factor  into  account,  then  we  can  determine  the  spot  area of 
the  double-maximum  cycle  in  the  year of maximum of the  single-maximum 
cycle  from  the  previously  determined  spot  areas  in  this  year.  The  numbers 
in  parentheses  for  the  19th  cycle  wereobtained  usingspot  areas of 2297m.s.h. 
and 2050 m.s.h. ,   respectively,  fo r  the  single-maximum  cycle. 

T A B L E  1 6  

Spot  areas for  solar  hemispheres in rhe year of maximum  of  the  single-maximum 
cycle  (according to Bezrukova) 

Cycle 
number 

12 
13 
14 
15 
16 
17 
18 
19 

Year 

1883 
1893 
1905 
1917 
1927 
1937 
1947 
1951 

Single- 
maximum 

cycle 

340 
517 
440 
611 
319 
75 7 
992 

(1440) 
(1290) 

Double- 

cycle 

1.820 
1.104 

860 1.270 
679 1.791 
1317 1.139 
1645  1.658 

(1.5  92) I Difference 

0.052 
0.081 

For  the two remaining  character is t ics  of the  double-maximum  cycle, 
Bezrukova's  method  gives  only a very  approximate  estimate.  An analysis 
of the  data  shows  that  the  area of the  f irst   maximum of the odd double- 
maximum  cycle  in  every  pair of cycles  does not exceed  the  area of the  pre- 
ceding  even  single-maximum  cycle in i ts   year  of maximum. On  the  basis 
of this,  it   may  be  assumed  that for the  f irst   maximum of the  19th  double- 
maximum  cycle  this  area  does not  exceed  1645  m.s.h.  On  the  other  hand, 
the  behavior of the  Hale pairs of cycles  implies  that  this  area  should  be 
greater  than  the  spot  area of the  previous  cycle,  which  was 1127 m.s.h. 
Moreover,   this  area  is   definitely  greater  than  the  spot  area of the  double- 
maximum  cycle  in  the  year of maximum of the  single-maximum  cycle, 
that   i s ,   i t  is greater  than  1290  m.s.h.  This also applies  to  the  area of the 
second  maximum of the  19th  double-maximum  cycle. 

justifies  the  use of her  method  for  the  prediction of spot  areas.   The  main 
defects of the  method  are  its  limited  applicability  (it  applies  to odd l l - y e a r  
cycles  only) and the  semiqualitative  nature of the  estimates  obtained. 

Bezrukova's  forecast  for  the  19th  cycle is a  fairly  accurate  one,  and  this 
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The  method of Xanthakis  (1959) is based  on  the  relationship  between  the 
principal  characterist ics of the  11-year  cycle  and  the  length of i t s   r i s ing  
part. Let us introduce  the  following  quantities: S, and S8, the  maximum 
spot  areas  in  the  northern  and  southern  solar  hemispheres; N, the  cycle 
number;  and tN and t,, the  lengths of the  r is ing par t  of the  cycle  in  the 
northern  and  southern  hemispheres,  

the  maximum  spot  areas  (per  rotation)  in  the  northern  and  southern  hemi- 
spheres  can  be  computed  from  the  expressions 

If  :,and ts are expressed  in  solar  rotations,   then,  accordingtoXanthakis,  

S N = 1 0 5 6 + 2 . 6 ( t , - 6 5 ) z + 7 3 0 s i n ( N - 5 ) ~ ,  (4.17) 

Ss=1280+5.8(ts-62~-580sin(N-5)$. (4.18) 

For  the  entire  solar  disk,   the  average  monthly  maximum  spot  area is 

S=2171+2.37(t-6565p, (4.19) 

where t is in  months.  To  calculate  the  yearly  maximum  sunspot  area, we 
use  the  formula 

5'=1060+1.65(t-67)', 
where t is in  months, or the  formula 

(4.20) 

S=i100+240(~-55.6)*.  (4.21) 
where t is in   years .  

tions, but for   forecasts   i ts   accuracy is apparently  much  lower,  since  the 
prediction of the  length of the  r ising  part  of the  cycle is very  complicated. 
Xanthakis  did  not  concern  himself  with  this  problem  at  all,  although  it  is 
of primary  significance  for  his  method.  Actually,  the  variation of the  length 
of the  rising  part of the  11  -year  cycle  for  the  spot  areas is so  complex  in 
nature  that  is  impossible  to  refer,  with  any  degree of certainty,  to  anything 
other  than a purely  qualitative  estimate.  Thus,  the  quantitative  value of 
Xanthakis's  method is practically  negligible,  and  the  method is of academic 
interest   only.  In  this  aspect  i t   is   similar  to  Schuster 's   method  (see § 2 of 
this  chapter),   which  served  more  or  less  as a point of departure  for  the 
development of other  methods of ultralong-range  forecasting of Wolf num- 
bers,  these  other  methods  being  useful  for  practical  forecasts. 

data, no reliable  method  for  the  ultralong-range  forecasting of spot-group 
areas  can  be  developed  at  present.  Much  more  success is possible,  how- 
ever,  using  methods  for  the  prediction of this  index  within  the  current  11- 
year  cycle.   Therefore,   special   at tention  should now be  given  to  the  study 
of the  intracycle  regularities  in  the  variation  of  sunspot-group  areas. 

The  method of Xanthakis  gives  quite  satisfactory  results in back  calcula- 

It seems  to  u s  that,  due  to  the  obviously  insufficient  volume of available 

§ 9. Concluding  Remarks 

Ultralong-range  forecasts of solar  activity,  in  spite of their  long  history, 
s t i l l  do  not  give  satisfactory  results.  Different  methods  often  lead  to d i a -  
metrically  opposite  conclusions, so that  the  difficulty is further  increased  by 
the  fact  that  we  cannot  take  averages of the  results  obtained by the  various 
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methods  without  leading  to  error.  Suffice  it   to  say  that  the  forecasts 
offered by different  authors  for  the  19th  cycle  ranged  from 50 to 208. This  
wide  range of predicted  heights  for  the  19th  cycle is due  more  to  fundamental  
differences  in  the  initial  assumptions of the  various  authors  than to an in- 
herently low accuracy  of  the  ultralong-range  forecasts.   Therefore,  we are 
forced  s imply  to   prefer   some  par t icular   forecast   mainly  on  the  s t rength of 
i ts   basic   premises .  

Of all the  methods  for  the  ultralong-range  forecasting of Wolf numbers  
discussed in this  chapter,  special  attention  should  be  given  to  the  methods 
of Gleissberg  and Ol ' ,  and  especially  to  the  latter  since  it   provides a means 
of internal  control.  Finally,  let u s  note  that, in  view of the  preceding  con- 
siderations,  any  evaluation of the  forecast   accuracy  in  this  case  is   meaning- 
l e s s .  
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Chapter V 

FORECASTS OF THE BASIC CHARACTERISTICS 
OF THE  20TH  CYCLE 

§ 1. General  Considerations 

Forecas t s  of the  basic   character is t ics  of the  20th  solar  cycle  are  especi-  
ally  difficult,  chiefly  because,  according  to  most  investigators,  the  19th 
sunspot  cycle  represents  the  extremum of the  80-year  to  90-year  cycle and 
is distinguished  by  an  exceptionally  high  intensity.  In  any  case, no 11-year 
cycles  with  comparably  high  intensities  have  been  recorded  during  the  entire 
period of telescopic  observations of the  sun.  Almost  everyone  agrees  that  
the  next  (the  20th)  cycle wi l l  definitely  be  lower  than  the  current  (the  19th) 
cycle.  However,  what we wish  to  determine is just  how much  lower  it w i l l  
be,  and this  is   the  main  problem. 

So far, when  giving  forecasts  for  the  cycle  to  come,  it h a s  been  suffici- 
ent  merely  to  take  into  account  the  properties of all the  cycles  recorded 
during  the  period of telescopic  solar  observations.   The  19th  cycle,   how- 
ever ,  w a s  the  f irst   extraordinary  cycle  to  be  observed, and  the  predictions 
made  for  it  have  shown  that  certain  additional,  still  unknown,  factors  must 
be  taken  into  consideration.  Nevertheless,  the  19th  cycle,  which  was  odd, 
was  the  second  cycle of a Hale  pair,  and  this  simplifies  the  problem  to a 
certain  extent. But now we a r e  faced  with a dilemma,  namely  whether  the 
drop  in  activity  from  the  present  cycle  to  the next cycle  will  be  exception- 
ally  large o r  whether  it  will  remain  almost  equal  to  the  previous  drop  (that 
is, not more  than  80 or  90,  in t e r m s  of Wolf numbers).   This  uncertainty 
has led investigators  to  seek new methods of ultralong-range  forecasting, 
and  in some  cases  to  seek  even  purely  qualitative  methods. U p  to  the  pres- 
ent  very few works  have  been  published  on  this  subject,  but  these wi l l  be 
discussed  in  detail   in  this  chapter.  

solar   act ivi ty  is that of Chadwick  (1959)  and  his  viewpoint is as follows,. 
Since  i t   is   equally  certain  that   178-year and  169-year  sunspot  cycles  exist, 
this  author  maintains  that   there is equal  certainty  that  the  next  (20th)  cycle 
wil l   be   e i ther   higher   or   lower   than  the  19th  cycle .  Now, this  proposition 
actually  contibutes  nothing  outside of i ts   skept ic ism,  and  in  fact  it is also 
equally  certain  that   the  178-year and  169-year  sunspot  cycles  are  purely 
hypothetical.  This is the  reason, by the  way, why these  cycles are not 
taken  into  consideration  in  any of the   forecasts   for   the 20th  cycle.  Conse- 
quently,  Chadwick's  viewpoint w i l l  be  disregarded  in  the  following. 

In  addition, a new element  which  has  only  recently  appeared  in  connec- 
t ion  with  forecasting  the  basic  characterist ics of the 20th cycle is the  de- 
velopment  of  an  alternative  approach  to  the  prediction of the  epochs 
of  extrema  for  the  11-year  cycles.   This new approach is largely  due 

The  only  exception  to  the  prevailing  opinions  for  the  predicted  trend of 
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to  the fact that  the  regressions of Waldmeier  (1935),  which  correlate  the 
tempora l   charac te r i s t ics  of the  11-year  cycle  with its intensity, now give 
a much  lower  accuracy  thzn  when  they  were  originally  applied.  This  may 
be  caused  by  the  existence of some"1ong"  cycle of solar  activity  which so 
far has  escaped  notice (see Chapter  I,  S 11). 

Finally,  the  various  difficulties  involved  have  led  many  authors  to  give 
forecasts   for   only  some (or even  for  just   one) of the  character is t ics  of the 
20th solar  cycle  and  to  confine  themselves  to  individual  comments  concern- 
ing  the  other  characterist ics or simply  to  neglect  them  entirely. 

J2 .   Bezrukova ' s   Forecas t  

The  forecast  of Bezrukova  (1959b)  gives  only  the  heights of the 20th  and 
21st  sunspot  cycles  and is semiqualitative  in  nature.  The  method  used is 
somewhat  reminiscent of that of Chvojkova (see Chapter IV, J 5)  but is 
considerably  simpler  than  the  latter. 

11-year  cycles.   She  observes  that   for odd cycles  this  variation is m o r e  
regular  than for even  cycles,  and  that  for odd cycles   there  is an  a l terna-  
tion of the  heights of many-year  cycles  made up of odd cycles.  A s  shown 
by Figure  15,   many-year   cycle  I is high,  cycle I1 is low,  and  cycle I11 is 

Bezrukova  considers  separately  the  variations  in  height of odd and  even 

I 

I 3 5 7 9 11 13 f 5 1 7  19 0 L 
2 4 6 8 10 12 14 16 18 

Numbers of odd cycles Numbers of even  cycles 

FIGURE 15 F I G U R E  16 

once  again  high. In addition,  the  high  maximum of cycle I is followed by a 
low minimum  in  the  fifth  11-year  cycle,  while  the low maximum  of  cycle I1 
is followed by a high  minimum  in  the  13th  cycle.  It is likely  that  the  high 
maximum of cycle I11 will  be  followed by a low minimum  in  the  21st  11-year 
cycle,  that  is,  that  this  cycle  will  be  definitely  lower  than  the  13th  cycle, 
whose  maximum Wolf number w a s  84.9. If w e  assume  that ,  as indicated 
by Figure  15,  the  height of the  minima of the  many-year  cycles  continually 
increases   f rom  the 5th  through  the  13th  to  the  21st  cycle,  then Wu for   the 
odd  21st  cycle  should  be  approximately 120. 

The  curve  for  the  variation  over  many  years of the  height of the  even 
11-year  cycles  (Figure 16) also  shows a gradual  upward  change  intheheight 
of  these  cycles. If we assume that  in  this  case as well  the  height of the 
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minima  of  the  many-year  cycles  continually  increases,  then W M  for   the 
even  20th  cycle  may  be  about  75.  If,  however,  these  heights  alternate  in 
pairs, then  the  20th  cycle  will  be  lower  than  the  14th  cycle,  the  maximum 
Wolf number of which  was  63.5. 

Thus,  according  to  Bezr.ukova's  forecast,  the  maximum Wolf number 
of the  20th  sunspot  cycle w i l l  be  less than 64  or else  about  75,  while  that 
of the  21st  cycle  will  be less than  85 or about  120.  Earlier,  Bezrukova  (1959a) 
had  found  from  an  analysis of the  curve  for   the  var ia t ion of sunspot  activity 
over  many  years  that   the  maximum Wolf number of the  20th solar   cycle  
could  be  from  45  to  85.  Her  later  forecast (195913) gives a somewhat   nar-  
rower  range of Wolf numbers ,  so  that a separation of the  cycles  into  even 
and odd improves  the  forecast   appreciably.  

Despite  the  qualitative  nature of Bezrukova's  forecast,  it   appears  to  be 
more  reliable  than  that  of Chvojkova (w,= 30 for the  20th  cycle),  which is 
based  on  approximately  the same premises  as Bezrukova's  method  but  which 
involves a quite  complicated  mathematical  apparatus. 

Bezrukova  does  not  give  the  epochs of extrema  of  the  20th  and  21st  sun- 
spot  cycles,  since  her  method  does  not  enable a prediction  of  these  char- 
ac t e r i s t i c s  of the  11-year  cycle.  This  is  obviously  one of the  main  defects 
of this  method of forecasting.  Moreover,  Bezrukova's  method  actually as- 
sumes that  the  behavior of the  80-year  to  90-year  sunspot  cycles  will  not 
change  in  the  future.  That  this is t rue   seems  to  us  to  be  very  unlikely, and 
consequently  Bezrukova's  forecast for the  20th  cycle  may  well  be  too low.  
The  advantages of Bezrukova's  method  are  its  simplicity  and  the  fact  that 
it   utilizes  the  properties of the  22-year  sunspot  cycle,  properties  which 
have a definite  physical  significance. 

3.   Minnis 's   Forecast  

Forecasting  the  height of the  20th  sunspot  cycle  has  been  considered  in 
more  detai l  by Minnis  (1960), who takes  as  his  init ial   data a series of twenty 
maximum  smoothed  monthly Wolf numbers .  H e  maintains  that  to  establish 
the  height  limits for the  next  (20th)  sunspot  cycle  it is necessary  to  estimate 
objectively  whether  this  minimum  will  lie  between  certain  specified  limits. 
In order  to  ensure  higher  reliability,  Minnis  applies  three  different  methods, 
employing  1) a direct  sequence, 2 )  the  frequency  distribution of AWM and 
wy, and 3)  an  autocorrelation  function.  Let u s  now consider  each of these 
methods  separately.  

The  differences A W M  between  the  maximum  relative  spot  numbers  can 
be  either  positive o r  negative.  Let us  introduce  the  following  notation: if 
a given  difference  in  the series has   the same sign as the  preceding  one, 
then  this  trend  in  the  variation of successive  maxima  will  be  designated as 
s; if two  successive  differences  have  opposite  signs,  then  the  trend  will  be 
designated as d .  By applying  this  notation  to  the  variations  in  height of the 
maxima of the  11-year  cycles,  w e  obtain  the  following  direct  sequence, 
which  may  also  be  easily  deduced from Figure 1: 

dsdssdsdsdddddddss 
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We  wish now to  evaluate  the  relative  probability  that  the  next  term  in  this 
sequence  will  be s (in  which case the  next  cycle  will  be  higher  than  the 
cu r ren t   cyc le )  or d (in  which case the  next  cycle  will   be  lower  than  the  cur- 
rent   cycle) .  

The  heights of the 11 -year   solar  cycles since  1750  have  ranged  on  the 
average  between 50 and  150,  with  the  exception of the  19th  cycle.  Since 
the  average  and  most  probable  values of AWM are about  35,  therefore  it 
can  be  expected  that  the  probability of two o r  more  successive  changes  in  
the same direction  will  be  lower  than  the  probability of a sequence  of 
changes in the  opposite  direction.  Thus  the  probability p 1  that s will  occur 
is lower  than  the  probability (i--pl) that d will   occur.   This  hypothesis is 
actually  verified by the  frequencies of occurrence  for  s and d, which  give 
pl = 0.4. Consequently,  it  follows  that  the  probabilities p z  and ps that a 
second  and a third s will  occur after one   o r  two  changes  in  the same direc-  
tion are less   than 0.4. Since p l  > p t ,  we  obtain  the  best  agreement  between 
the  computed  and  observed  frequencies of occurrence of s and d by  setting 
pl= 0.4, p z =  0.3 or  0.35, and ps= 0.3. 

Using  these  values  for p ,  Minnis  calculated  the  expected  number of 
occurrences  for  four  possible  combinations of s and d. Moreover,   these 
numbers   were  calculated  assuming  that  s and d occur  with  equal  probability 
under  all  conditions.  The  results are given in Table 17.  

T A B L E  1 7  

Expected  number of occurrences  for four  possible combinations of d and s (according to Minnis) 

Probability Number of occurrences 

x’ 
P I  s.3 sd ds dd Pa PI 

(a) 

2 4 5 6 - - Observed . . . 0.11 1.8 4 3   4 4  6.5  0.3 0.3 0.4 
0.19 2.1 4 3  4 2  6.3  0.3  0.35 0.4 

(c) 
Calculated (b) 

2.06  4.2  4.2 4.3 4.3  0.5 0.5 0.5 

- 

The  table  shows  that,  according  to  the X 2  criterion,  the  fit  obtained  in 
cases (b)  and (c) is essentially  the  same  as  that   in  case  (a).   Nevertheless,  
cases (b)  and  (c)  appear  more  plausible  on  physical  grounds  and  also  be- 
cause  the  probability of occurrence of seven   success ive   d - te rms ,  a com-  
bination  which is observed  in  the  direct  sequence,  would  have  been  less 
than 0.01 for  P= 0.5. 

Thus  it   was  decided  that  the  best  estimates are p ,  = 0.3 and (i-p3)= 0.7. 
But s ince  the  direct   sequence up to 1958 (see Figure 1) terminates  in ST, 
therefore  the  probability  that  the  next  cycle  will  be  higher  than  the  present 
one is 0.3  and  the  probability  that  it  will  be  lower is 0.7. 

two  maxima,  and  the  mean  and  minimum  frequencies of AWH lie nea r  
AWw = 0. Neglecting  signs,  we  obtain  an  average  value  for /AW,I of 35, 
with a standard  deviation of 23. Consequently,  for a negative AWH between 
the  maxima of the  19th  and  20th  cycles  the  estimated  value of W, for  the 
20th  cycle is 168 * 23,  while  for a positive AWM i t  is 238 t 23 .  

Let us  now consider  the  frequency  distribution of AWp The  curve  has 
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It is also  useful  to  note  that  AwM w a s  greater   than 75 in  only  one  out of 
nineteen cases and  that  it   has  never  been  greater  than 92. A subtraction 
for  the  current  (19th)  cycle  shows  that   in  the  next  (20th)  cycle  we  may  ex- 
pect W,>128 with a probability of 0.95  and W,>lll with  an  even  higher 
probability.  Analogous  arguments  based  on  the  distribution of W r  lead to 
the  conclusion  that  the  probability of Wr< 159  in  the  20th  cycle is 0.95. 

function  computed  from a s e r i e s  of twenty  values of W, The  form of this 
function  shows  that  periodicity  apparently  exists,  the  period  length  being 
seven  or   e ight   11-year   cycles .   However ,   except   for   the  casesrzland 
r = 3  (where ris the  distance  between  the  correlated  values of Wyr expressed 
in  cycles),   the  autocorrelation  coefficients  are  not  appreciably  different 
from  zero.  

The  author  next  applies  the (wy, "; wx, "*) regression  equations  for r = i  
and r=3  to  forecast  the  height of the  next  (20th)  cycle.  The  values  obtained 
for  the  maximum  smoothed  monthly  relative  spot  numbers  are 154 f 3 8  and 
97 f 3 6 ,  respectively.  It  should  be  noted  that  even  in  these  cases  the  auto- 
correlation  coefficients  are  low,  while  the  standard  deviations of the  es t i -  
mates  obtained  are  too  high.  Therefore,  it  can  hardly  be  expected  that  this 
method  will  give  forecasts of high accuracy. 

In o r d e r  to  obtain  the  most  reliable  results,   Minnis  combines  all   his 
es t imates  of the  height of the  20th  sunspot  cycle,  these  being  listed in 
Table  18. 

The  next  method  used by Minnis  consists  in  the  use of an  autocorrelation 

T A B L E  1 8  

Estimates of height of 20th sunspot cycle  (according  to Minnis) 
" 

Method used 

~ 

~ ~ _ _  

Direct  sequence . . . . . . .  
Direct  sequence . . . . . . .  
Distribution of W M  . . . . . .  
Distribution of AWM. . . . . .  
Distribution of AWM. . . . . .  
Distribution of AWy. . . . . .  
Distribution of AWM. . . . . .  

Autocorrelation (?=a) . . . . .  
Autocorrelation ( r e i )  . . . . .  

~~ ~ .. - .  ~~~~~ 

> 203 
< 203 
< 159 
> 128 
> 111 
238-1-23 
168f23 
154k38 

Probability 

0.3 
0. I 
0.95 
0.95 

> 0.95 
0.68 
0.68 
0.68 
0.68 

The  most  objective  means of combining  these  individual  estimates  would 
apparently  be  to  calculate  the  average of es t imates  6 through 9 and to  weight 
each  estimate  in  inverse  proportion  to  its  variability  [standard  deviation]. 
Moreover,  the  weights of es t imates  6 and 7 should  be  reduced  to 0.3  and 
0.7,  respectively, i n  o rde r  to  make  them  compatible  with  estimates  1 and 
2, so that  their  combined  weight is unity,  just  as is the  [combined]  weight 
of es t imates  8 and  9. If this  procedure is followed,  then,  with a probability 
of 0.68, the  maximum  smoothed  monthly Wolf number for the  20th  solar 
cycle  should lie between 104  and  218. 

However,  this  interval is very  wide,  mainly  because  it  was  obtained 
using  estimates  whose  probabilities  are  definitely  negligible.  Actually, 
t he re  is a probability of 0.3  that  the  value of AWM between  the  maxima of 
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the  19th  and  20th  cycles  will  be  positive.  Thus  it  follows  that  the  probability 
that w~ >I59 is only  0.05  (estimate 3) .  If we assume that  these  two  calcu- 
lations are independent,  then  their  combined  probability is only  0.02. Con-  
sequently,  in  practice  we  may  reject  the  possibility  that  the  20th  cycIe  will 
be  higher  than  the  19th  cycle.  Thus  estimate 6 can  be  dropped.  and  the  sub- 
sequent  discussion  can  be  confined  to  estimates 3 ,  4,  5, 7, 8, and 9 only. 

deviation of 45.  Consequently,  the  probability  that  in  the  20th  cycle W ,  will 
lie between  104  and  194 is 0.68.  Estimates 3 and 5 taken  together  lead  to 
the  conclusion  that  the  height of the  next  (20th)  cycle  will  lie  between 111 and 
159,  with a probability of 0.9. Both of these  estimates  show  that  the  maxi- 
mum Wolf number  for  the 20th cycle  will  apparently  be  greater  than  108, 
which is the  average  height of the  last  twenty  sunspot  cycles for the   yea r s  
1750 through  1950. 

The  final  limits  for  the  height of the  20th  cycle  which  were  adopted by 
Minnis are 110  to 160, with a probability of 0.75. Minnis 's   forecast   i s   actu-  
ally  based on the  variation of solar  activity  during  the  last  twenty  cycles, 
and  thus  it  has  the same disadvantages as Bezrukova's  forecast.  However, 
in  contrast  to  Bezrukova,  Minnis  uses  quantitative  methods.  On  the  other 
hand,  the  probabilities  that  he  gives  do not ac tua l ly   charac te r ize   the   re l i -  
ability of any of his  estimates.   In  this  respect,   the  methods  used by Minnis 
are to  some  extent  similar  to  Gleissberg's  method.  Finally,   Minnis  at taches 
too much  significance  to  the  average  values of AWM, although,  as  shown by 
F igure  1,  exceptionally  high  11  -year  cycles are followed by a ve ry   sha rp  
drop  in  sunspot  activity. 

Minnis  arbitrari ly  gives  the  epoch of maximum of the  20th  solar  cycle 
as 1968.  However,  he  does  not  deal  especially  with  this  subject  and  appar- 
ently  gives  this  year  only  because  during  recent 11 -year  sunspot  cycles  the 
epochs of maximum  have  occurred  at   intervals of approximately  10  years. 
The  year   given by Minnis  should  thus  be  regarded  as  just a synonym  for  the 
20th  cycle. 

\a The  weighted  mean for es t imates  7 through 9 is 149,  with a s tandard 

5 4. Gle issberg ' s   Forecas t  

In  order  to  forecast   the  main  characterist ics of the 20th solar   cycle ,  
Gleissberg  made  use of a modification of the  probability  method  developed 
by  him  previously.  This  modification  consists  in  introducing  basic  rela- 
t ions  from  which  the  main  characterist ics of the  next  11-year  cycle  may 
be  determined  with  maximum  possible  probabilities of 90 and  95%  (Gleiss- 
berg,  1952). 

variation  in  the  parameter t,(4). If this  quantity  increases,  then  the  upper 
l imits  of the   o ther   charac te r i s t ics  of the  11-year  cycle,  such as the  height, 
are determined, and v ice   versa ,  

of the  current   cycle  is n-1  and  those of the  three  preceding  cycles   are  n-2, 
n -3 ,  n-4. The  quantity t:') is here  the  average  reduced  length of the  r is ing 
pa r t s  of cycles n "4, n - 3 ,  n-2,  and - 1. A s  a first   approximation,  let   us 

A s  previously,  the  method is based on  a determination of the  trend of the 

Let  the  number of the  forthcoming  solar  cycle  be n,  so that  the  number 
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assume  tha t  t!) remains  the same for   cycles  n-3, n - 2 ,  n- i ,  and n as well, 
and let us denote  it   in  this case as t!')'. Finally, S,(z) is defined as the s u m  
of the  values of some   pa rame te r  z for   the  three  cycles  n- 3, n-2, and n -1. 

If the maximum of cycle n - i  has  passed,  then  we know i ts  W,. w,, f,, 
and t,. On  the  basis  of these  data,  we  can  give a forecast   for  the  next cycle, 
with  probabilities of 90  and 9570, using  the  following  formulas: 

It  should  be  noted  that  these  probabilities of 90  and  95% refer not  to  the 
en t i re   forecas t  for the  next  cycle but  only  to  each of the  given  relations 
individually. 

If for  cycle n - 1 we  also know 1/4wM along  the  descending  part of the 
cycle,  then  we know the  value of t,, and s o  the  forecast  for  the  next  cycle 
can  be  supplemented by the  prediction of t,, using  one of the  following 
relations : 

with a probability of  907" with a probability of  9570 

t/<395 - s t y  - s, (t,). >380 
( 5 . 4 )  

Let u s  now proceed  directly  to  Gleissberg's  forecast  for the  next  cycle 
(Gleissberg,  1960). As shown by Table 9, for   cycles  16 through  19 w e  have 
w$'= 137.6, tL4)= 29,  and ti4)= 40. Thus,  the  preceding  value of W$)gives  for 
the  20th  cycle  w,<78.8  (in  the  case of the  lowest  cycle). W e  also see from 
Table 9 that  ti4)can  be  expected  to  increase  in  the  future.  Then  the  height 
of the  next  (20th)  sunspot  cycle  can  be  forecast  using  the  formula 

Here  we  can  make  use of the  following  data: 

t!')' = 29; S,(W,)= 119.2 + 154.8 + 201.3 = 472.3. 

Consequently,  it  follows  that,  with a probability of 95%. we may expect 
that  for  the  20th  cycle 

W,<87.7. 
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If W$'= 137.6 is increased  very  sl ightly,   then  we  st i l l   obtain a satis- 
factory  agreement  with  this  forecast. A s  mentioned  in  the  previous sec- 
tion,  the  average  maximum Wolf number  for  the  last   twenty  solar  cycles 
is 108. Therefore,   according  to  Gleissberg,   the  height  of  the  forthcoming 
20th  cycle w i l l  be  lower  than  the  average. 

In  the same ar t ic le   Gleissberg  gives   amore  accuratevalue of ft for   the 
19th  sunspot  cycle.  He  claims  that,  with a probability of 9570, the  smoothed 
monthly Wolf number  will   reach ' I , W M  no later  than May  1963. 

W e  may  use  formulas  (5.2)  to  calculate  the  other  characterist ics ( #,and 
W,) for   the 20th  cycle  and  also t, for  the  19th  cycle.  Since sa(#,)= 23+21+ 
+ 31 = 75, w e  have  for  the 20th cycle t , < 4 2 .  In o r d e r  to determine  the 
epoch of maximum of the 20th cycle,  w e  need  to know tI for  the  19th  cycle. 
From  Table  9 we  have  s3(t,)=45+37+41 = 123,  that is t I =  17, so that  in  the 
next  cycle  the  smoothed  monthly Wolf number  will   reach 1IrW,,(20)=22 no 
ear l ier   than  January 1965. By means of formula (4.61, we  may now calculate 
the  value of a. which  determines  the  epoch of minimum of the  next  cycle. If 
w e  take  tl>  17,  then  we  find  that  a>8, so that  the  epoch of minimum of the 
20th cycle  will   occur  no  later  than  January 1964. 

using  the  last  formula  in  (5.2), w e  find  that  the  minimum Wolf number  in  the 
20th  sunspot  cycle  will  be less than  29.2, a value  which is in ou r  opinion 
highly  improbable.  This  improbability is apparent ly   the  reason why Gleiss-  
berg  did  not  quote  it  in  his  forecast. 

It is   also  possible  that   the  other  characterist ics  calculated  here  for  the 
20th sunspot  cycle  using  his  method  led  to  doubts  in  Gleissberg's  mind. For 
example, if we  calculate t ~ + t , =  42+  17 = 59,  then  we  find  that  the  epoch of 
maximum of the  20th  cycle  occurs  in  April  1968.  This  result  coincides  with 
the  epoch of maximum  given  without  any  evidence by Minnis.  However, 
even  the  formulas of Waldmeier  (1955) set the  epoch of maximum  in  1969, 
with a much  higher  height  assumed  for  the  20th  cycle  (Vitinskii,  1961a). 

The  height of the 20th cycle  predicted by Gleissberg is chiefly  determined 
by the  heights of the  twenty  preceding  11-year  cycles,  that  is,  it  is assumed 
implicitly  that  the  next  cycle  will  necessarily  resemble  one of these  twenty 
cycles .  In this  sense,   Gleissberg  contradicts  to  some  extent  his own con- 
clusion  concerning  the  existence of a long-duration  solar  cycle  (Gleissberg, 
1944b).  Finally,  the  preceding  calculations  show  clearly how illusory are 
the  probabilities  used by Gleissberg for the  predicted  characterist ics of the 
11  -year  sunspot  cycle. 

According  to  the  Zurich  data, S,(W,)= 3.4+7.7+3.4= 14.5.  Consequently, 

I5 .  The  Forecast  of 01'  

Contrary  to  the  preceding  forecasts  for  the  20th  sunspot  cycle,   the  fore- 
ca s t  of 01'  estimates  not  only  the  height  but  also  the  epochs of maximum 
and  minimum.  Since  the  prediction of the  epochs of ex t rema is the  newest 
and  most   interest ing  facet  of this   forecast ,   le t  u s  first  consider  the  method 
used  by  01'  to  determine  these  epochs  for  the  11  -year  solar  cycles. 

Newcomb  (1901)  showed  that  the  most  probable  hypothesis,  in  this re- 
spect ,  is the  one  which  maintains  that  the  temporal  development of so l a r  
activity is governed by a strict  periodicity,  with a period of 11.13 years .  
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In order  to  verify  Newcomb's  hypothesis,  01' (1960)  calculated  the  epochs 
of ex t rema  for   the  Wolf numbers  from  1700  to  1901,  using  this  period,  and 
compared  the  values  obtained  with  the  observed  epochs.   determined  using 
smoothed  monthly Wolf numbers  with  an  accuracy  up  to 0.1 year.   The  dif-  
ferences Atmx and At,,obtained in  this  way  were  then  averaged  over  four 
cycles.  T&le 19  gives  the  averaged  values At-and Atmln, and  also  the 
values of W,calculated  using  the same method. 

- - 

T A B L E  1 9  

Deviations  from  epochs of extrema of the  11-year  cycle  (accord- 

Cycle  numbers 

"3. - 2,  -1.0 
1. 2, 3. 4 
5. 6, 7. 8 
9. 10. 11. 12 

13, 14. 15. 16 
17, 18. 19 

ing to 01' )  

AT* 

+ 0.95 
-1.12 
-0.20 
-0.02 
+ 1.60 
-0.66 

- 
A l m U r  

+ 1.45 
-2.30 
+ 0.90 
-0.10 
+ 1.20 
-1.40 152 

An examination of Table 19 leads  to  the  following  conclusions: 
1. t he re  is a regular  al ternation of positive  and  negative  values of At,,, 

2. t he re  is a positive  correlation  between  the  values of and A%, 

3 .  t he re  is a negative  correlation  between At, and At&, on  the  one 

4 .  t he re  is no  systematic  increase  in  the  values of G , a n d  At,,,for l a t e r  

Therefore,  Newcomb's  hypothesis is justified,  with  the  minor  addition 

- 
in  successive  cycle  groups; 

for  the  corresponding  cycle  groups; 

hand,  and w,, on the  other;  

cycles .  

that  the  deviations of the  observed  epochs of ex t rema  for   the  Wolf numbers 
from  the  epochs  calculated  on  the  basis of the  11.13-year  period are not 
random,  but  rather  that  they  depend  on  the  overall  level of solar   act ivi ty .  
This  factor  enabled  01'  to  derive  some  correlation  relations  which  could 
be  used  subsequently  to  forecast  the  epochs of minimum  and  maximum  for 
the  next 11 -year  sunspot  cycle. 

01'  obtained  the  following  coefficients r for  the  correlation  between 
A t ,  for  a given  even  cycle  and At,,for the  following  cycles: 

- - 
- 

1) for  the  preceding odd cycle,  + 0.60, 
2)   for   the  current   even  cycle ,  + 0.77, 
3)  for  the  next odd cycle,  + 0.77. 

Correspondingly,   i t   was found  that  the  coefficients  for  correlation  be- 
tween At,, for  a given  odd  cycle,  on  the  one  hand,  andAtml,for  the same odd 
cycle  and  for  the  next  even  cycle,  on  the  other, are + 0.72  and + 0.75, re- 
spectively. 

The  coefficients  for  correlation  between At, and  the  values of W, and ZW are also  quite  high:  they are respectively -0.78 f0.08 and  -0.72 fO.lO. 
I t   was  a lso found  that W,for a given  cycle  and At,,for the  next  cycle  can 
be  correlated  stochastically,  with a correlation  coefficient of - 0.64 +0.12, 
whereas   there  is virtually  no  correlation  between Atmln and W, for  any  given 
cycle.  
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A very close correlation  was  established  between At- and Z,W (with 
r= -0.91). For  the  totali ty of even  cycles  this  correlation is somewhat 
higher ( r =  0.93)  than  for  the  odd  cycles ( r =  - 0.78).  On  the  basis of all 
these  correlations,  01'  obtained  the  following  formulas  for  forecasting 
the  epochs of extrema of the  next  (20th)  solar  cycle: 

For the  current  (19th)  cycle,  At,= - 2.5  and At,,= - 1.5.  Thus,  using 
formulas  (5.5)  and  (5.6),  we  find  that (At,&@= 1.8  and (At&-= -1.5. 
Let u s  next  extend  Newcomb's series of epochs of extrema for the Wolf 
numbers,   constructed  on  the  basis of the  11.13-year  period,  up to the 
beginning of the  next  century  (see  Table  20). 

T A B L E  2 0  

q"---! Cycle  number Epoch of minimum Epoch of maximum 

1955.8 1960.4 
1967.0 1911.5 
1978.1 1982.6 

22 1989.2 1993.8 
2000.3 2004.9 

Now,  taking  into  account  the  values of and (At,,,&, w e  find  that 
the  epoch of minimum of the  next  (20th)  sunspot  cycle  should  occur  in 
1967.0-1.8 = 1965.2,  while  the  epoch of maximum  should  be  in  1971.5-1.5 = 
= 1970.0. 

we  may  expect  values of At,,, and At,,,= for  the  21st  and 22nd cycles  which 
are  close  to  zero,  that  is,  the  epochs of extrema of these  cycles  will  be 
close  to  those  given  in  Table  18  [apparently,  Table 20 is meant  here].   In 
the  23rd  cycle  these  quantit ies  may  already  become  posit ive.  

In  order  to  estimate  the  height of the  20th  cycle,  01'  (1961)  used,  in 
general,  the  method  discussed  in  Chapter IV, 5 4.  The  extrapolated  value 
of W$) for  the 20th cycle  can be taken as 125,  and  since w e  know that ZW, 
for  cycles  17,  18,  and  19 is 456 we  obtain 

In  accordance  with  the  general  tendency  toward  decreasing  solar  activity, 

W,(20) = 125.4 - 456 = 44. 

Thus  we  have  some  indication  that  the  20th  solar  cycle  will  be  analogous 
to  the  very low 5th cycle,  which  followed a cycle  having  the  very  high  value 
of xw= 840.  Actually,  from  the  estimate of 01' for  the  descending  part of 
the  cycle,  we  have ~w(19)=1000, that  is,  in  this  respect  the  19th  cycle is 
s i m i l a r  to  the  4th  cycle. 

Independent  (although  very  rough)  estimates of W,for the 20th  sunspot 
cycle  can  be  obtained  using  regressions  between At- and Atfin and Wx It 
was found  that  between & = A t ,  -A&,,, and wH (for even  cycles)  the  follow- 
ing   regress ion   formula  is valid: 

W, = -31.4Bt + 83 (r = -0.61). (5.7) 

If we  take  the  sums  xw,and Xat for neighboring  cycles,  combined  into 
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odd-even  pairs,  then  we  obtain  the  relation 

mx= -21.5 Bt + 196. 

From  the  previously  obtained  values (Atd&= -1.8  and (At-)m = -1.5, 
we  find  that 8t= 0.3. Then,  after  substituting  this  value  into  the last two 
regression  formulas,  taking  into  account  that  for  the  19th  cycle w,= 190 
and &= - 2.6, w e  find from  the first regression  that  W (20) = 74 and  from 
the  second  that  Wy(20) = 23. The  average of these  is w&?5) = 48, avalue  which 
is in  satisfactory  agreement  with  the  estimate  obtained  using  the  method,  for 
ultralong-range  forecasting  developed  previously by 01'. 

The  forecast  of 01 '   makes  use of certain  unique  procedures, and an at- 
tempt is made  to  achieve  an  intercontrol  between  the  estimates  obtained. 
Of par t icular   interest  is the  method  for  the  independent  determination of the 
epochs of ex t rema of the  11-year  cycles.   Since  Waldmeier 's   regression 
correlating  the  height of the  cycle  maximum  with  the  average  lengths of i ts  
rising  and  descending  parts  has  been found to  give  a  much  lower  accuracy 
than  when  initially  applied,  therefore  this new  method is especially 
valuable. 

using  equations (5.7) and  (5.8),  appears  to  be  rather poor. According  to 
this  forecast ,   the  maximum Wolf number w i l l  drop by  about  140  to 150 from 
the  present  cycle  to  the  next  cycle. N o  comparable  drop  has  been  observed 
during  the  entire  period of regular  telescopic  observations of sunspots  (since 
1700).  On  the  other  hand,  01'  uses  the  maximum  relative  spot  numbers  for 
this  period  only, and therefore  he cannot  obtain  any  other  result. If he had 
used AWM only,  then  analogously  he  could not have  obtained  a  difference 
greater  than 92. Thus,  it  may  be  concluded  that  cycles of higher  order 
must  be  taken  into  consideration.  Unfortunately,  the  lack of available  data 
at present  prohibits  any  progress  in  this  direction,  except  for  purely  quali- 
tat ive  estimates.  

Finally,  it  should  be  noted  in  passing  that  the  height of the 20th cycle  ob- 
tained  by  01'  using  equation (5.7) is in  good agreement  with  Gleissberg's 
estimates,  provided  we  keep in  mind  that  Gleissberg  gives  smoothed  monthly 
Wolf numbers  rather  than  the  yearly  numbers.  

However,  the  forecast  for  the  height of the  next  (20th)  cycle,  especially 

§ 6.  Vitinskii 's   Forecast  

The  forecast  of Vitinskii  (1961a) is qualitative  in  nature  and is based on 
the  data of Schove's  table  (see  Table  12).  According  to  this  table,  an  11- 
year  cycle  with  an  intensity  comparable  to  that of the  current  cycle  last   oc- 
cu r red  in  1369-1378  (about  600 years   ago) .  On  the  other  hand,  it is known 
that  in  the  17th  century  solar  activity w a s  a t   an   a l l - t ime low for  the  entire 
period of telescopic  solar  observations.  In  Chapter  I, § 11  we  gave  some 
arguments  in  favor of the  existence of a  600-year  cycle, so  that  there is no 
point  in  repeating  them  here. 

A s  observed  previously  (Chapter  4, § 7), Schovels  data  give WM= 85 to 
120  and W x =  145,  respectively,  for  the  20th  and  21st  cycles, if the  arbit-  
r a r y  notation  used  by  Schove is replaced  by  the  average  heights of the 
11  -year-cycle  maxima. It seems  l ikely  that ,   since  the  current  cycle is 
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comparable  in  intensity  to  the  cycle of 1369-1378,  the  height of the  20th 
sunspot  cycle  can  be  expected  to  be 100, as  follows  from  Schove's  table  for 
the  14th  century.  Let  us  note,  too,  that  this  value falls within  the  range of 
Wxvalues  predicted  by  Schove  for  the 20th cycle. 

In order   to   forecas t   thehe ight  of the  21st  solar  cycle,  we  may  use re- 
gression  equation  (1.19) (see Chapter  I,  § 7). From  this  equation,  taking 
the  height of the  20th  cycle as 100,  we  find a value of Wy= 126 for  the  21st 
cycle. In this  forecast   the  epochs of extrema  obtained  for  the  20th  sunspot 
cycle  by  01'  are  used.  The  method of 0 1 '  has  unfortunately  not  yet  been ap-  
plied  to  the  21st  cycle.  Therefore,  with  great  reservation of course.  w e  
apply  the  corresponding  equations of Waldmeier.  Using  these  equations, w e  
obtain  for  the  21st   solar  cycle  an  epoch of minimum in  1976.0  and  an  epoch 
of maximum in 1979.4. 

the  variations  over  many  years of coefficients o and F and  the  oscillation of 
coefficient 6 in  the  Stewart-Panofsky  formula  (see  Chapter I, § 8). Without 
mentioning  that  this  method  does not take  into  account  long-duration  solar 
cycles  either,  let  us  note  that  it   leads  to  very  contradictory  results.  The 
height of the  20th  cycle is found to  range  from 50 to  120.  This is due  to  the 
fact  that  the  oscillations of coefficient 6 are   extremely  uncertain,   whereas  
any  slight  change  in  the  value of this  coefficient w i l l  have  an  appreciable 
effect on the  result.  Therefore,  although  this  method of forecast ing is of 
some  interest ,   the   data   a t  hand s t i l l   a r e  not sufficient  to  permit a success -  
ful  application, and so this  forecast   can not  be  taken  seriously. 

Previously,  Vitinskii  tried  to  forecast  the  height of the 20th cycle  from 

I7. Baur ' s   Forecas t  

Baur  (1961)  predicts  the  value of one  characterist ic of the  20th  cycle, 
namely  its  epoch of minimum.  Baur's  method is based on the  quite  close 
correlation  between  the  ratio of the  lengths of the  rising  and  descending 
par t s  of the  cycle  and  the  maximum  smoothed  monthly Wolf number WM, 
obtained from the  data  for  eighteen 1 I -year  sunspot  cycles.  

T 

Let  us  define X,=+. x,=w, where tl and 9 are  the  deviations  from 

the  average  values x, and x,. The  average  length of an  11-year  cycle is 
taken  as 11.06 yea r s .  A study of the  correlation  between X, and x, for odd 
cycles  has  shown  that  in  this  case  it  is l inear  and  quite  high ( r =  +0.88). In 
spi te  of the  small  volume of data (n=9), this  correlation  coefficient is rea l ,  
s ince P= 0.0027.  Given  r,,and Ul= 0.61  and us= 32.14, let  us find the  mathe- 
matical  expectation  for  the  deviations 2, f rom x, in  odd cycles:  

E (zJ = 0.0167. (5.9) 

In the  current  (19th)  cycle, w,=200.8 and t ,=+95.2 ,  so that  E(23=+1.59. 
Since x, for  the 9 odd cycles  is 1.50,  we  obtain 

E (+) = 3.09. (5.10) 

For   the 19th  cycle, t = 1957.9-1954.3 = 3.6, so  that  from  (5.10) r is found 
to  be I l . l y e a r s ,   t h a t  is, the  next  sunspot  minimum  will  occur  in  1969.0 
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and  the  duration of the  present  solar  cycle  will   be 14.7 yea r s .  A compar-  
able  length  has  not  been  observed  during  the  last 210 yea r s .  

Baur  maintains  that   this  result  is due  to  the fact that  for  the  highest  odd 
11-year  cycles  the  relation  between z1 and zl is actually  nonlinear.  In  order 
to  overcome  this  difficulty,  he  introduces  a new charac te r i s t ic  X,; which is 
defined as follows. If rand  r 'are ,   respect ively,   the   reduced  lengths  of the 
rising  and  descending  parts of the  11  -year  cycle,   from  the  epoch of maxi -  
mum  to  the  last  month  in  which  the  smoothed Wolf number is less than or 

greater  than I/, W,, then X s = 7 .  For  odd cycles,  the  coefficient  for  the 

correlation  between X, and Xs is 0.80. 
An additional  parameter is then  introduced  to  obtain  a  more  real  coef- 

ficient  for  the  correlation  with X,. namely 

5' 

x, = v m , .  
The  coefficient  for  the  correlation  between  X,and X, is found to  be r,, = 
=+0.86, s o  that  in  this  case  it   can  be  considered  real  for n= 9. The  aver-  
age  value  X,over  the 9 odd 11-year  cycles is found to  be  12.92,  with a, = 
= 5.78. According  to  the  values of r,,, a,. and a,, w e  obtain 

E (z]) = O.OgIt,, (5.11) 

where z, is the  deviation of X,from  the  average  value x , .  
For  the  current  (19th)  cycle f =  1.75. In order  to  estimate r: Baur  used 

the  smoothed  monthly  relative  spot  numbers  up  to  May  1960, and af te r   ex t ra -  
polation  he  obtained ?'= 2.92, Thus,  X,= 1.67  and X,= 18.31, so that z,= 
= 5.39.  When this  value of z, is substituted  into  (5.11),  we  obtain E(z,)= 
=+0.49.  Then, X,= 1.99,  and since  in  the  current  cycle t =  3.6 w e  find that 
T= 7.2 years,   that   is ,   the  epoch of minimum of the 20th sunspot  cycle  should 
be  expected  in  February  1965.  Since  the  expected  error  in X,is 0.21,  there- 
fore  when  the  error is taken  into  account w e  see  that  the  epoch of minimum 
w i l l  occur  between  April 1964  and October  1965. 

tween  X,and X, exist   for odd l l -year   cycles   only.   Let  u s  now forget  this 
restriction  and  use 18 cycles  rather  than 9 cycles .  For the 18 cycles  we 
have 

It  was  initially  assumed  that  linear  correlations  between x, and x, and  be- 

X,=1.61,  x4=12.88, 0,=0.59. 0,=0.59, rl4=+O.?9. 

The  coefficient r,, is somewhat  lower for all  18 cycles  than  it  was  for  the 
9 odd cycles.   However,   i ts   reali ty  is   much  more  l ikely  than  for  the  case 
of odd cycles  only. 

Similarly  to  the  foregoing, w e  find  that 

E (zl) = o.OsOt,. (5.12) 

Since  in  the  19th  sunspot  cycle X,= 18.31, therefore  w e  have 

E ($)= 2.10. (5.13) 

The  expected  error  is 0.24. Thus we  find  that  the  epoch of minimum of 
the  20th  cycle is in  .TunelJuly  1965  and  that  the  margin of e r ro r   fo r   t h i s  
epoch  extends  it  from  August 1964 to A p r i l  1966. 

better,   Baur  resorts  to  the  following  art if icial   device.  He selects   the 
Since  it is s t i l l  not c l ea r  which of the two al ternat ives  of this  method is 
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t ime  interval in  which  the e r ror   i s   common  for   the  two alternatives  (August 
1964 through  October 1965) and  continues  it   symmetrically  in  both  directions, 
unti l   i t   corresponds  to  the  margin of error   for   the  f i rs t   case.   Then,   he  f inds 
that  the  next  sunspot  minimum  should  be  expected  between  June 1964 and 
December 1965. This  result   can  also  be  obtained  if ,   after  calculating  the 
epochs of minimum  using E(zJ for  the two al ternat ives ,  w e  then  take  their 
arithmetic  mean,  which is 1965.3 (Apri l  1965). and  finally  measure off on 
ei ther   s ide of this  epoch  the  margin of error   corresponding  to   the  f i rs t   case.  

Baur 's   forecast  is quite  close  to  that of 01'.  although  the  former is based 
on  the  "eruption"  hypothesis,  while  the  latter is based  on  the  properties of 
the  80-year  to  90-year  solar  cycle.   I t   should  be  noted,  however,   that   Baur 
was  unable  to  use as large  a  volume of data  as  Ol ' ,   because of the special 
features  of his  method.  Baur's  results  should  thus  be  regarded  as  less re- 
l iable.   Nevertheless,  we  have  given  them  here not  only  because  there  are 
s t i l l  too  few forecasts  for  the 20th cycle  to  allow  us  to  discriminate  but  also 
as  an  independent  confirmation of the  results  obtained  previously by 01' .  

In conclusion,  it  should  be  pointed  out,  too,  that  Baur's  method  resorts 
to  mathematical  methods  involving  certain  very  artificial  features,  and  this 
is not  justified by the  accuracy of the  results  obtained.  Therefore,   the 
method  cannot  be  recommended,  in  our  opinion,  for  actual  application. 

§ 8. A Summary of the  Results 

This   las t   sect ion  represents   a   summary of all   available  forecasts  for  the 
main  character is t ics  of the 20th sunspot  cycle  (Table 21). 

TABLE 2 1  

Author 

Schove . . . 
Bezrukova . . 
Minnis . . . 
Gleissberg . . 
01' . . . . 
Virinskii. . . 
Baur . . . . I wI 

85-120 
<65-75 
110-160 
< 88 

J O O  
44-48 

Epoch of minimum 

1966.5 

1965.2 

1964.5-1  965.9 

Epoch of maximum 

1972.5 

1968 
1970.0 

It is still  too  soon  to  attempt  any kind of analysis of this  table, and only 
the  future  can  tell  to  what  extent  the  forecasts  discussed  here wi l l  be  suc- 
cess fu l .  In  the  meantime,  as  long  as  the  forecasts  are so few, r eade r s  
are   referred  to   the  re levant   ar t ic les  which  will  undoubtedly  appear  in  the 
near  future.  
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CONCLUSION 

W e  have  considered  the  principal  empiricostatist ical   methods  for  the 
long-range  forecasting of Wolf numbers  and  we  have  shown  that  the  reli- 
ability of the  results  obtained  using  these  methods  still   leaves  much  to  be 
desired.  What,  then,  are  the  possible  ways  in  which  solar-activity  fore- 
casts  can  be  developed  in  the  future? 

F i r s t ,  a comprehensive  approach  to  this  problem  must  be  worked  out. 
Even  the  most  perfect  theory of solar  activity, if it  were  developed  in  the 
very  near  future,  would  not  give  completely  reliable  results.  However, 
a t   present  we s t i l l  do  not  have  anything  which  remotely  resembles  such a 
theory, so  that   as  a first   stage we should  seek  some way  in  which sa t i s -  
factory  results  can  be  obtained  even  using  just  the  individual  theoretical 
conclusions of solar  physics.  

The  methods  which  were  discussed  here  are  virtually  independent of the 
morphology of solar  activity.  Nevertheless, a morphological  approach  to 
solar-activity  forecasting would  in our opinion  mean a real  advance.  This 
is particularly  important  with  respect  to  the  development of short-range 
forecasting. A morphological  approach  involves a study of the  develop- 
ment of centers  of activity,   that   is ,  of all   the  layers of the  solar   a tmos-  
phere  from  bottom  to  top.   The  future  course of sunspot  activity  can  then 
be  evaluated  according  to  certain  preliminary  variations  which  take  place 
in the  other   layers  of the  solar   a tmosphere.   Moreover ,   observat ions of 
solar  radio  emission  in  the  centimeter  range  give u s  a  look  into  the  invisible 
hemisphere of the  sun a  day or two before a spot  group  emerges  over  the 
eastern  limb  onto  the  visible  hemisphere  (Molchanov, 1959; Ikhsanova, 
1960). Consequently,  these  data  provide u s  with  a  means  for  the  short- 
range  forecast ing of solar  activity. 

The  morphological  approach  has  still not been  tested  much  with  respect 
to  monthly  forecasts. If it   has  been  used  at  all,   it   has  been  regarded  just 
as being  supplementary  to  statistical  methods.  Thus, it would  be  very  inter- 
esting  to  develop a morphological  method  for  monthly  forecasting  which 
could  have  equal  status  with  the  existing  statistical  method of Mayot. 

spot   areas)  is the Wolf numbers.  However,  except  in  ultralong-range  fore- 
c a s t s ,  it would  be  very  useful  to  develop  methods  for  forecasting  various 
different  indexes of solar  activity.   Then,  parallel   forecasts of different  in- 
dexes  may  even  be  used  for  an  internal  control of the  reliability, if not for  
every  parameter ,   then at any  rate  for  many of them. 

hensive  theory of solar  activity  be  developed.  Such a theory  can  be  used 
as a basis  for  the  development of theoretical   methods  for  forecasting  the 
solar  indexes.  Although  the first attempt  to  do  this,   that  of Rubashev 
(19541, failed  to  give  satisfactory  results,  still   the  fact  that  this  problem 

At present,  the  only  subject of solar-act ivi ty   forecast ing (not  counting  the 

Finally,  it  is of exceptional  importance  for  forecasting  that a compre-  
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was  posed is a very  valuable  thing.  It is hoped  that  in  the  near  future  science 
will  be  able  to  solve  the  main  enigma  related  to  the  sun,  namely  to  determine 
the  reason  for   solar   act ivi ty   and  to   ascer ta in   i ts   mechanism.   Quite   recent ly ,  
Bjerknes's  hydrodynamic  theory of solar  activity  (Bjerknes,  1926) still seemed 
plausible.  Then,  however, AlfvCn (1 952)  published a theory  which  completely re -  
futed  Bjerknes's  picture of solar  activity  and  substituted  magnetohydrodynamic 
waves  for  it .  At present a synthesis of these  two  trends is in  process,  and  this 
has  led  to a vigorous  development of magnetohydrodynamics.  This is not  the  place 
to  discuss  the  many  problems  which are being  considered  or  have  already  been 
solved  in  this new field of physics  and  astrophysics.  However,  it  should  be 
mentioned  that now hardly  anyone  doubts  the  basic  fact  that  without  taking 
magnetic  phenomena  into  account  it is impossible  to  construct a valid  theory 
of solar  activity.  On the  other  hand,  various  investigators now pay special  
attention  to  the  study of the  properties of differential   solar  rotation  and of 
i ts   relation  to  the  magnetic  energy of the  sun. 

lem of solar-act ivi ty   forecast ing.   In   order   to   summarize us ing  even  fewer 
words,   let  u s  just   mention  that  all studies of active  processes  taking  place 
on  the  sun,  whatever  the  subject of these  studies  may  be,  will  contribute  to- 
ward a solution of this  important  problem. 

These are, in  brief,   the  main  trends  observed in the  solution of the  prob- 
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Monthly and yearly  observations of Wolf numbers 
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10.5 1 40.1 
34.5 1 50.0 51.0 1 48.0 

41.0 38.3 
61.0 60.0 

25.0 1 24.0 

XI1 

157.3 
40.0 

105.0 
11 0.0 
58.7 
35.2 

10.5 
1 4.0 
27.3 
112.7 
174.0 
129.5 
135.5 
74.0 
66.0 
56.0 
45.7 

30.0 

- 
verage 
- 
19.8 

154.4 
92.5 

125.9 
84.8 

38.5 
68.1 

22.8 

24.1 
1 0.2 

82.9 
132.0 
130.9 
118.1 
89.9 
66.G 
GO.0 
46.9 
41 .o 
21.3 
16.0 
6.4 
4. 1 
6.8 
14.5 
34.0 
45.0 
43.1 

42.2 
47.5 
29. I 



T A B L E  1 (continued) 

Year - 
1807 
1808 
1809 
1810 
1811 
1812 
!813 

i815 
1814 

1816 
1817 
1818 

' 1819 

1821 
1820 

1823 
1822 

1824 
1 825 

1827 
1826 

1828 
1829 
1830 
1831 

1833 
1832 

1835 
1834 

1830 
1837 

I - 
1 2.0 
0.0 

0.0 
7.2 

11.3 
0.0 

22.2 
0.0 

26.3 
19.2 

34.9 
36.4 

32.5 
19.2 
21.5 
0.0 

21.6 
0.0 

5.0 
17.7 
34.6 

43.0 
52.8 

52.2 
47.5 
30.9 
11.3 
4.9 

88.0 
7.5 

188.0 

- 
11 - 
12.2 
4.5 
9.2 
0.0 
0.0 

10.3 
1.9 

32.2 
12.0 

68.8 

22.4 
57.9 

26.6 
20.7 

4.3 
0.9 

10.8 
0.0 

15.5 

47.4 
18.2 

49.4 
64.4. 

72.1 

55.5 
50.1 

14.9 

24.5 
18.1 

107.0 
175.0 

9.6 
0.0 
0.9 
0.0 
0.0 
0.7 
1.9 
5.7 
26.2 
73.7 
96.2 
29.7 

4.5 
3.7 

16.1 
5.7 

0.6 
0.0 

36.7 
22.4 

57.8 
65.0 

84.6 
72.3 

55.1 
93.4 

11.8 
3.9 
19.7 
98.1 
134.6 

- 
IV 

23.8 
12.3 

0.0 
2.5 

0.0 
0.0 
16.6 
23.8 

58.8 
31.6 

26.4 
34.5 
20.2 
19.4 
9.2 
13.5 
0.0 
19.4 

24.0 
3.8 

46.0 

95.0 
61.1 

107.1 
54.6 
26.9 
2.8 
1.4 

142.9 
61.5 

138.2 

v I VI 

10.0 
13.5 
2.0 
0.0 
0.0 
1 .O 

5.8 
5.5 

44.3 
9.8 

21.2 
53.1 

29.3 
19.6 

1 .7 

0.0 
1.5 

2.8 

32.4 
15.4 

56.3 
89.1 
67.5 

38.1 
66.3 

41.3 
1 2.9 
8.8 

111.4 
43.6 

111.3 

12.0 
13.5 
1.7 
0.0 
0.0 
1.3 
11.2 

55.9 
14.9 

43.6 
40.0 
36.4 
35.0 
10.8 
1.8 
5.6 
0.0 
0.0 
15.4 
37.1 
56.7 
98.0 
73.9 

33.4 
65.1 

26.7 
1 .o 
33.2 
7.8 

124.7 
158.0 

- 
VI1 

12.7 

0.3 
6.7 

0.0 
6.6 
0.5 
18.3 
18.5 
35.5 

50.0 
38.8 

31.4 
26.0 

20.6 
2.5 

0.5 
7.9 

0.0 
30.9 

42.9 
52.5 

54.3 
90.8 

45.2 
43.9 

13.9 
7.0 
8.7 

110.7 
59.8 

162.8 

- 
VI11 - 
12.0 
8.0 
0.2 

0.0 
0.0 

15.6 
8.4 

47.2 
2.3 

23.2 
45.0 
31.5 

25.9 
26.1 

4.8 

0.0 
2.1 

25.4 
1.4 

39.6 
53.7 

18.3 
76.4 

50.7 
54.9 

5.7 
8.9 

4.0 

107.8 
59.0 

134.0 

- 
I X  - 
5.7 
11.7 
0.4 
0.0 
2.4 

15.3 
5.2 

31.5 
8.1 

47.8 
36.7 
26.1 
14.9 

4.4 
5.2 

0.0 
0.0 
20.5 
15.7 

49.6 
18.9 

50.4 
52.8 
62.1 
37.9 
8.2 

11.5 
11 .6 

00.8 
95.1 
90.3 

- 
X 
- 
8.0 
4.1 

0.0 
0.0 

6.1 
3.9 
27.8 

33.5 
19.3 

56.4 

31.7 
25.6 

27.5 

18.8 
9.0 

0.0 
0.4 

25.2 
15.6 
50.6 
57.2 
34.7 
57.2 
84.4 
46.2 
21.1 

24.8 
7.5 

95.2 
37.4 
23.7 

10.5 12.3 8.1 
2.6 0.0 10.1 

0.0 0.0 2.5 
0.0 0.0 0.0 
0.8 1.1 1.4 
7.9 10.1 5.0 
16.7 14.3 12.2 

37.2 65.0 35.4 
14.5 20.1 13.9 

38.1 29.9 45.8 
28.9 28.4 41.1 

25.1 30.6 23.9 
10.9 25.8 30.4 

7.9 9.7 15.7 
4.4 0.0 6.6 
0.0 0.0 4.0 
0.0 20.4 1.8 
0.0 0.8 8.5 
11.7 22.0 16.6 
39:5 I 68.1 I 36.3 



T A B L E  1 (continued) - 
Year - 
1838 
1839 
1840 
1841 
1842 
1843 
1844 
1845 
1846 
1847 
1848 
1  849 
1850 
1851 
1852 
1853 
1854 
1855 
1856 
1857 
1858 
1859 
1860 
1861 
1862 
1863 

1865 
i866 
1867 
i8e.8 

1864 

- 
I - 

146.9 
107.6 
81  .2 
24.0 
20.4 
13.3 
9.4 

25.7 
38.7 

159.1 
62.6 

156.7 
78.0 
75.5 
68.4 
41.1 
15.4 
12.3 

13.7 
0.5 

39.0 
83.7 

62.3 

48.3 
63.1 

57.1 
40.1 
31.6 
i5.6 
0.0 

81.5 

- 
I 1. - 
84.8 

102.5 
87.7 
29.9 
22.1 
3.5 

43.6 
14.7 

51 .O 

111.8 
44.9 

131.7 
89.4 

105.4 
67.5 
42.9 
20.0 
11.4 
4.9 

34.9 
7.4 

87.6 
88.0 

64.5 
56.7 
47.1 
39.3 
38.4 

15.8 
0.7 

77.8 

- 
I11 - 

140.8 
77.7 
55.5 
29.7 
21.7 
8.3 

13.6 
43.3 
63.9 

108.9 
85.7 

96.5 
82.6 
64.6 
61.2 
37.7 
20.7 
17.4 
0.4 
5.2 

57.5 
90.3 
98.9 

101.0 
43.6 
66.4 
66.3 
39.5 
24.6 

26.5 
9.2 

IV - 
126.6 
61.8 
65.9 
42.6 
26.9 
8.8 

20.8 
563 
69.2 
44.7 

107.1 
102.5 
44.1 
56.5 
65.4 
47.6 
26.4 
4.4 
6.5 

38.3 
11.1 

85.7 
71.4 
98.5 
53.7 
40.6 
35.8 
29.4 
17.6 
5.1 
36.6 

V - 
137.6 
53.8 
69.2 
67.4 
24.9 
21.1 
12.0 
47.8 
59.9 
75.4 

102.2 
80.6 
61.6 
62.6 
54.9 
34.7 
24.0 
9.1 
0.0 

29.2 
41.4 
91 .o 

107.1 
56.8 
64.4 
53.8 
40.6 
34.5 
12.9 
2.9 
26.7 

VI - 
94.5 
54.6 
48.5 
55.7 
20.5 
10.5 
3.7 

31.1 
65.1 
85.3 

81.2 
70.0 

46.9 
63.2 

40.0 
21 .l 
5.3 

16.0 
5.0 

44.5 
87.1 

108.6 

84.0 
87.8 

40.3 
57.8 
33.6 
16.5 
1.5 
31.1 

123.8 

VI1 

108.2 
84.7 
60.7 
30.8 
12.6 
9.5 

21.2 
30.6 
46.5 

139.2 
52.2 

78.0 
39.1 
36.1 
42.0 
45.9 
18.7 
0.4 

22.2 
4.6 

56.7 

116.7 
95.2 

78.0 
73.4 
32.7 
54.7 
26.8 

9.3 

28.6 
5.0 

VI11 - 
131  .2 
78.8 

57.8 
39.3 
26.5 

23.9 
11.8 

32.3 

140.6 
54.8 

132.5 
61.3 
61.6 
57.4 
39.7 
50.4 
15.8 
3.1 
5.9 

55.3 
16.9 

106.8 
100.3 
82.5 
62.5 
48.1 
54.8 
37.8 
12.7 
4.9 

34.4 

- 
IS - 
73.6 
132.7 

35.1 
74.0 

18.5 
4.2 

29.6 
6.9 

107.1 
161.2 
100.3 
93.7 
86.2 
67.9 
37.5 
33.5 
22.4 
0.0 

42.4 
4.4 

80.1 
105.8 
92.2 
79.9 

22.0 
66.6 

28.5 
21.6 
7.3 
9.8 
43.8 

X 
- 
90.8 
90.8 
49.8 
28.5 
38.1 
5.3 

21  .5 
40.7 

180.4 
55.9 

132.4 
71 .5 
71 .O 
62.5 
67.3 
42.3 
12.7 

4.5 
9.1 

40.6 

114.6 
91.1 

90.1 
67.2 
42.0 
39.9 
33.9 
17.1 
14.1 
13.5 
61.7 

77.4 79.8 
68.8 63.6 
54.3 53.7 

40.5  17.6 
19.8 38.8 

19.1 12.7 

39.4 59.7 
10.7  21.fi 

60.4 65.5 
138.9 109.6 
11 4.6 159.9 
99.7 97.0 
54.8 60.0 
50.9 71.4 
54.3 45.4 
28.8 23.4 
28.2 21.4 
4.2 3.1 

31.4 37.2 
7.7 7.2 

51.9 66.9 
97.2 81.0 

53.7 so.5 
97.9 95.6 

50.6 40.9 
37.7 41.2 
57.6 28.6 
24.6, 12.8 

9.3 25.2 
9.0 1.5 

5g.1 i 67.6 

- 
verage - 
i03.2 
85.8 

36.8 
63.2 

24.2 
10.7 
15.0 
60.1 

98.5 
61.5 

124.3 
95.9 
66.5 
64.5 
54.2 
39.0 
20.6 
6.7 
4.3 

22.8 
54.8 
93.8 
95.7 
77.2 
59.1 
44.0 

30.5 
47.0 

16.3 

37.3 
7.3 



1 

T A B L E 1 (continued) - 
Year 

I 

1869 
1870 
i871 
1872 
1873 

1875 
1874 

1876 
1877 
1678 
1879 
1880 
1881 
1882 
1883 
1884 
1885 
1886 
1887 
i 888 
i 889 
1890 
1891 

1893 
1892 

1894 
1895 
1896 
1897 
1898 
1899 

- 
I - 

60.9 
77.3 
88.3 
79.5 
86.7 
60.8 
14.6 
14.3 
24.4 
3.3 
0.8 

24.0 

45.0 
36.4 

60.6 
91.5 
42.8 
29.9 
10.3 
12.7 
0.8 
5.3 

13.5 
69.1 
75.0 
83.2 
63.3 
29.0 
40.6 
30.2 
19.5 

- 
I1 - 
59.3 

114.9 
125.3 
120.1 
107.0 
64.2 
22.2 
15.0 
8.7 
6.0 

27.5 
0.6 

53.2 
69.3 
46.9 
86.9 

25.9 
71.8 

13.2 

8.5 
7.1 

22.2 
0.6 

75.6 

84.6 
73.0 

57.4 
67.2 

36.4 
29.4 

9.2 

- 
111 - 
52.7 

159.4 
143.2 
88.4 
98.3 
46.4 
33.8 
31.2 
11.7 
7.8 

19.5 
0.0 

51.5 
67.5 
42.8 
R6.8 
49.8 
57.3 
4.2 
7.8 
7.0 
5.1 

1  0.4 
49.9 
65.7 
52.3 

52.0 
61 .O 

29.1 
38.3 
18.1 

- 
IV - 
41.0 

160.0 
162.4 
102.1 
76.2 
32.0 
29.1 

15.8 
2.3 

0.1 

19.3 
6.2 

51.7 
95.8 
82.1 
76.1 
55.0 
43.7 

5.1 
6.9 

4.3 

20.5 
1.6 

69.6 
88.1 
81.6 
76.9 

31 .O 
43.8 

14.5 
14.2 

V - 
104.0 
176.0 
145.5 
107.6 
47.9 
44.6 
11.5 
5.1 

21.2 
5.8 

23.5 
2.4 

43.5 
64.1 
32.1 
66.5 
73.0 
30.7 
20.0 

7.0 
2.4 

41.1 
4.8 

79.6 

J01.2 
84.7 

67.5 

20.0 
27.7 

25.8 
7.7 

108.4 
135.6 

109.9 
91.7 

44.8 
38.2 
23.9 

1 .6 
13.4 
6.4 

34.1 

45.2 
60.5 

76.5 
51.2 
83.7 
27.1 
15.7 

6.4 
7.1 

1.3 
48.3 

88.2 
76.3 

98.9 
71.5 
49.0 

22.3 
11.3 

20.5 

4.n 

132.4 
59.2 

103.0 
105.5 
66.9 
67.8 
12.5 
15.2 

0.1 
5.9 

21.9 
7.5 

76.9 

80.6 
45.4 

53.1 
66.5 
30.3 
23.3 
3.1 

11.6 
9.7 

58.8 
76.8 

106.0 
88.8 

47.8 

27.6 
45.0 

9.0 
13.5 

153.8 
79.6 

110.0 
92.9 
68.2 
61  .3 
14.6 
8.8 

0.0 
6.3 

48.1 
10.7 

58.0 
40.4 
46.0 
55.8 
50.0 

21.4 
16.9 

2.8 
20.6 
8.5 

101.4 
33.2 

129.2 
70.3 

27.2 
68.9 

21.8 
31.4 
2.0 

IX 1 x 

136.0 
80.6 

114.6 
80.3 

47.5 
28.0 
2.4 
9.9 

16.4 
5.3 

66.0 
G.l 

57.7 
53.2 

52.6 
61.9 
39.6 
21.4 

7.4 
8.8 
6.5 

53.8 
17.2 

62.8 
77.9 
65.9 
57.7 
61.3 
48.1 
34.8 
8.4 

146.4 
59.4 

i03.5 
R9.0 

47.4 
34.3 
12.7 
14.3 
6.7 

12.3 
1.1 

43.0 

59.2 
64.0 

83.8 
47.8 
38.7 
8.6 
6.6 
2.1 
2.1 

11.2 
51.5 
70.5 
79.7 
75.5 

28.4 
67.9 

34.4 
14.3 

13.0 

77.4 
147.5 
105.4 

! 

1  12.0 
55.4 
28.0 
17.7 

14.5 
9.9 

12.9 
4.1 

30.7 
54.8 
84.4 
84.5 
36.6 
33.3 
0.3 
6.9 

10.7 
0.2 

41.9 
9.6 

65.4 

56.6 
75.1 

38.0 
47.2 

8.4 
30.9 
7.8 

104.3  73.9 
130.0 I 139.1 
90.3  111.2 
83.9 ' 101.7 ' 

49.2 
44.7 293 
66.3 

I 17.i 9:9 

0.5 
2.3 

29.6 
7.2 

47.3 
41.8 
75.9 
47.2 
21.7 
12.4 
20.7 
6.7 
6.7 
7.8 

32.2 

93.8 
78.6 

60.0 

42.6 
70.7 

33.3 
12.6 
10.5 

8:2 1 i1:3 
~ 12.3 

I 

3.4 

32.3 
6.0 

54.3 
59.7 

63.5 
63.7 

25.4 
52.2 

13.1 

6.3 
6.8 

7.1 
35.6 
73.0 
84.9 
78.0 
64.0 
41.8 
26.2 
26.7 
121 



T A B L E  1 (continued) - 
Year - 
is00 
1901 
1902 
1 903 
1904 
1905 
1906 
1907 
1908 
1909 
1910 
191 1 
191  2 
1913 
1914 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
I930 

I 

9.4 
0.2 
5.2 
8.3 

31.6 

45.5 
54.8 

39.2 
76.4 

56.7 
26.4 
3.4 
0.3 
2.3 

23.0 
2.8 

45.3 

96.0 
74.7 

51.1 
48.1 

31.5 
11.8 
4.5 
0.5 
5.5 

71.8 
81.6 
83.5 
68.9 
65.3 

I1 

13.6 
2.4 
0.0 

17.0 
24.5 
85.8 
31.3 

108.2 
33.9 
46.6 
31.5 

0.0 
9.0 

2.9 
2.6 

42.3 
55.4 
71.9 
65.3 
79.5 
53.9 
28.3 
26.4 

1.5 

23.2 
5.1 

93.0 
70.0 

73.5 
64.1 
49.2 

I11 - 
8.6 
4.5 

12.4 

37.2 
13.5 

64.5 
56.5 

60.7 
28.7 
66.3 
21.4 

7.8 

0.5 
4.9 

38.8 
3.1 

67.0 

72.2 
94.8 

66.5 
70.2 

54.7 
26.7 

3.3 
1.8 

18.0 
62.5 
69.6 
85.4 
50.2 
35.0 

IV - 
16.0 
0.0 

26.1 
0.0 

43.0 
39.3 
55.3 
52.6 
57.6 
32.3 

16.5 
8.4 

4.5 

17.3 
0.9 

41.3 
71.8 

80.5 
74.7 

51.8 

32.4 
14.8 

11.0 

11.3 
6.1 

38.5 
31.7 

93.5 
80.6 
52.8 
38.2 

V - 
15.2 
10.2 
2.8 

39.5 
14.6 

57.7 
48.0 

43.0 
40.8 
36.0 
22.2 
9.0 

0.0 
4.4 

5.2 
33.0 

114.1 
74.5 

76.7 
88.1 
33.3 
22.2 
8.0 
3.2 

20.8 

64.3 
42.8 

79.1 
76.9 

86.8 
58.2 

- 
VI 

12.1 
5.8 
1.4 

41.9 
16.3 

63.2 
49.0 

40.4 
48.1 
22.6 
12.3 
2.2 

0.0 
4.1 

68.8 
11.4 

67.7 
114.9 

111.2 
59.4 

38.7 
33.7 

5.8 
9.1 

24.0 
47.5 
73.5 
59.1 
91.4 
71.9 
28.8 

- 
VI1 

8.3 
0.7 
0.9 

27.9 
50.6 
73.0 

103.3 
49.7 
39.5 
35.8 
14.1 
3.5 
3.0 
1.7 
5.4 

71.6 

119.8 
53.5 

107.6 
64.7 
27.5 
41.9 
10.9 
3.5 

28.1 

52.3 
38.5 

54.9 
98.0 

21.9 
70.2 

VI11 

4.3 
1 .o 

28.8 
2.3 

58.2 
58.8 
47.7 
54.3 
90.5 
23.1 
11.5 
4.0 
0.3 
0.2 

6Y.G 
7.7 

154.5 
35.2 

101.7 
69.0 
i 9.2 
22.8 
6.5 
0.5 

37.9 
19.3 

61.6 
53.8 
83.8 

24.9 
65.8 

- 
IX - 
0.f 
8.: 

11.1 
7 1  

55.( 
30.1 

56.1 
85.C 
86.f 

26.2 
38.E 

4 s  
9.5 
1.2 

49.5 
12.7 

45.1 
129.4 
79.9 
54.7 
36.3 
17.8 
4.7 

25.1 
1 3.2 

60.2 

68.4 
60.8 

89.7 
34.4 
32.1 

- 
X 
- 
12.9 
3.7 

38.9 
16.3 

54.2 
78.7 

65.4 
17.8 

58.4 
32.3 

38.3 
2.6 
4.6 
3.1 

53.5 
8.2 

50.7 
72.2 
85.0 
52.8 
49.6 
18.2 
6.2 

25.6 
11.6 

69.2 
71.5 
G3.1 
61.4 
54.0 
34.4 

- 
XI - 
4.5 

10.3 
44.5 
38.0 

107.2 

61.5 
38.9 

45.5 
55.8 
4.9 
4.2 

0.7 
1.1 

42.5 
16.4 

65.6 
96.4 
83.4 
42.0 
27.2 
17.8 
I. 4 

d 0.0 
22.5 
58.6 
60.5 
67.2 
50.3 

35.6 
81.1 

3.8 

- 
XI1 - 
0.: 
0.C 
1.1 

54.6 
45.6 

55.5 
64.7 
47.3 

54.2 
39.5 

5.8 
2.2 
6.4 
3.8 

22.3 
34.5 
53.0 

129.3 
59.2 
34.9 

20.3 
29.9 

17.5 
2.8 

16.5 
98.6 
79.4 
45.2 
59.0 

108.0 
25.8 

- 
Lverage - 

9.5 
2.7 
5.0 

24.4 
42.0 

53.8 
63.5 

62.0 
48.5 

18.6 
5.7 
3.6 
1 .4 
9.6 

47.4 
57.1 

103.9 
80.6 
63.6 
37.6 
26.1 
14.2 
5.8 

16.7 
44.3 

69.0 
63.9 

35.7 
65.0 

4a.9 

77.8 



T A B L E  1 (continued) - 
Year - 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 
1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1053 
1954 
1955 
1956 

1 958 
1 957 

io59 
leS0 
18Bl 
- 

I - 
14.6 
12.1 
12.3 
3.4 
18.9 

132.5 
62.8 

98.4 
80.3 
50.5 
45.6 
35.6 
1 2.4 
3.7. 
18.5 
47.6 
115.7 
108.5 
119.1 
101.6 
59.9 
40.7 
26.5 
0.2 
23.1 

165.0 
73.6 

202.5 
247.4 
146.3 
57.9 

11 - 
43. 1 
10.6 
22.2 
7.8 
20.5 
74.3 
128.5 
1 19.2 
77.4 
59.4 
44.5 
52.8 
28.9 
0.5 
12.7 

133.4 
86.2 

86.1 
182.3 
94.8 
59.9 
22.7 
3.9 
0.5 

124.0 
20.8 

130.2 
164.9 
143.1 
108.0 
46.1 

-I- " 

L 

I l l  - 
30.0 

10.1 
11.2 

4.3 
23.1 
77.1 
83.9 
86.5 
64.6 
83.3 
46.4 
54.2 
27.4 
1 1.0 
21.5 
76.6 
129.8 
94.8 
157.5 
109.7 
55.9 
22.0 
10.0 
10.9 

1 18.4 
4.9 

157.4 

185.7 
102.2 
53.0 

190.7 

N - 
31.2 
1 1.2 
2.9 
11.3 
12.2 
74.9 
109.3 
1 01.0 
109.1 
60.7 

60.7 
32.8 

26.1 
0.3 
32.0 
75.7 
149.8 
189.7 
147.0 
113.4 
92.9 
29.1 
27.8 
1.8 

1 10.7 
11.3 

175.2 
1 96.0 
163.3 
122.0 
61  .4 

v 1 VI 

24.6 15.3 
17.9 22.2 
3.2 5.2 

27.3  45.7 
1 9.7  6.7 

54.6  70.0 
116.7 i 130.3 127.4  97.5 
118.3 101.0 
54.4 ! 83.9 
29.5 I 59.8 
25.0 : 11.4 
14.1 
2.5 

7.6 

30.6  36.2 
5.0 

84.9 73.5 
201.3 163.9 
174.0 167.8 
106.2 121.7 

108.5 100.6 
106.2 83.6 

23.4  36.4 
12.5  21.8 
0.8 
28.9  31.7 

0.2 

136.6 116.6 
164.6 200.7 
1758 171.5 
172.0 168.7 
i19.6 110.2 
51.0 77.4 

VI1 - 
17.4 
9.6 
2.8 
9.3 
33.9 

145.t 
52.3 

165.3 
97.6 
67.5 
66.9 
17.7 
13.2 
5.0 

116.2 
42.6 

1 57.9 
142.2 
125.8 
91 .o 
61.5 
39.3 
8.6 
4.8 

129.1 
26.7 

187.2 
191.4 
149.6 
121.7 
70.2 

VI11 - 
13.0 

0.2 
6.8 

8.3 
30.1 

137.7 
87.0 

1 15.7 
105.8 
105.5 
80.0 
20.2 

1 6.7 
19.4 

107.2 
25.3 

188.8 

123.8 
157.9 

85.2 

54.9 
61 .O 

23.5 

40.7 
8.4 

158.0 
169.6 

200.2 
199.6 
134.1 
55.8 

IX - 
19.0 
4.0 
5.1 
4.0 
42.1 

100.7 
76.0 

89.6 
112.6 
66.5 
6 5.9 

10.0 
17.2 

34.9 
143 

94.4 
169.4 
143.3 
145.3 
51.3 
83 1 
28.2 
19.3 

42.7 
1.5 

173.2 
235.8 
201.2 
145.2 
127.2 
63.6 

X - 
10.0 
8.9 
3.0 

53.2 
5.7 

89.0 
124.9 
99.1 
88.1 
55.0 
46.3 
19.2 
7.8 
16.9 

102.3 
68.8 

163.6 
136.3 
131.6 
61.4 

23.8 
51.6 

8.2 
7.0 

155.3 
58.5 

153.8 
181.5 
111.4 
82.8 
37.7 

18.7 
8.2 
0.6 
8.7 

1 15.4 
64.2 

122.2 
74.4 

68.1 
58.4 
38.3 
30.7 
f 0.2 
10.8 

123.8 
46.0 

128.0 
95.8 
143.5 
54.8 
52.4 
22.1 

9.2 
1 .6 

201.3 
89.2 

210.9 
152.3 
124.0 

316 
89.6 

17.0 
11.0 

15.4 
0.3 

123.4 
61.5 

88.8 
92.7 
42.1 
68.3 
33.7 
22.5 

28.4 
1 8.8 

27.4 
121.7 
116.5 
138.0 
117.6 
54.1 

34.3 
45.8 

2.5 

76.9 
7.6 

192.1 
239.4 
187.6 
125.0 
85.6 
30.9 

21.2 
11.1 
5.7 
8.7 
36.1 
79.7 
114.4 
109.6 
88.8 
67.8 
47.5 
30.6 
1 6.3 

33.2 
9.6 

92.6 
151.6 

135.1 
136.2 

69.4 
83.0 

31.4 
13.9 

38.0 
44 

1 89.9 
141.7 

184.8 
150.0 
1123 
53.9 



T A B L E  2 

Monthly and yearly  smoothed Wolf numbers 

Year - 
1749 
1750 
1751 
1752 
1753 
1754 
1755 
1756 
1757 
1758 
1759 
1760 
1761 

1763 
1762 

1164 
1765 
1766 
1767 
1768 
1769 
1770 
1771 
1772 
1773 
1774 
I775 
1110 

I 

89.0 
66.8 
47.2 
38.2 
17.1 
9.2 

11.5 
18.0 
46.5 
46.5 
62.5 
75.7 
68.3 
52.4 
47.8 
25.3 
16.4 
20.6 
53.0 
81.2 

111.1 

77.3 
93.6 

50.0 
38.9 

9.3 
11.0 

I1 - 
90.2 
64.2 
46.4 
36.2 
15.8 
8.4 

11.4 
20.7 
46.8 
48.1 
63.3 

64.8 
77.5 

46.9 
51.5 

25.2 
14.4 
22.9 
55.4 
86.2 

110.9 
89.1 
77.6 
46.1 
38.2 

8.6 
11.7 

- 
I11 - 
92.3 
59.5 
45.3 
36.7 
13.9 
8.4 

11.3 
23.8 
47.2 
50.1 
62.8 
79.8 
62.5 
49.8 
45.4 
24.6 

26.0 
12.8 

57.8 

109.3 
91.5 

86.1 
75.4 
43.5 
37.1 

12.9 
8.5 

- 
IV - 
92.6 
54.9 
46.4 
35.8 
13.0 
8.8 

10.6 
25.7 
48.4 
51.5 
61.8 
83.0 
60.4 
48.8 
43.0 
23.6 
12.0 
29.3 
60.6 

105.2 
97.9 

85.4 
72.8 
40.4 
35.6 

14.5 
1.9 

V - 
88.2 
51.7 
47.8 
34.2 
12.7 
8.5 

28.4 
10.7 

47.7 
52.7 
62.0 
85.9 
59.0 
47.1 
40.8 
22.5 

32.9 
11.2 

103.7 
63.5 

102.3 

70.7 
83.5 

37.4 
34.2 
7.5 

16.3 

VI 

83.8 
49.0 
48.0 
32.1 
12.3 
8.9 

10.6 
31.4 
47.2 
53.4 
02.7 
86.5 
59.9 

37.8 
45.8 

21.4 

36.4 
11.2 

67.4 
106.1 
101.2 
81.9 

35.6 
67.8 

31.9 

18.5 
7.2 

VI1 - 
81.6 
83.3 
46.2 
48.2 
28.8 
1 2.6 
9.7 

10.3 
33.4 
48.0 
54.8 
63.0 
84.8 
61.7 
45.3 
34.9 
20.4 

38.9 
12.1 

70.7 
107.3 
98.0 
64.3 
64.6 

28.9 
34.5 

20.8 
7.7 

VI11 - 
82.8 
81.8 
45.0 
47.8 
25.8 
13.4 

10.9 
9.6 

35.7 
48.2 
56.2 
64.4 
82.9 

46.5 
60.5 

32.0 
19.3 
13.5 
41.5 
71.5 

111.9 
91.1 

60.1 

24.4 
35.6 

22.8 
8.9 

88.9 

IX - 

78.6 
84.1 

46.4 
46.0 
22.8 
14.0 
9.4 

12.4 

47.7 
37.9 

55.0 
66.0 
80.7 
58.3 
48.0 
29.9 
19.1 
14.5 
43.1 
72.1 

85.7 
90.1 
58.3 
37.3 
19.8 
9.2 

25.2 

t 15.8 

86.3 87.8 
75.4 72.9 
47.5 47.6 
44.1 42.2 
19.9 18.3 
13.9 12.7 
9.4 10.1 

40.6 42.7 
14.1 16.0 

46.6 45.6 
59.6 61.1 
66.8 08.8 

56.7 55.3 
78.8 75.5 

48.3 45.8 
28.8 27.3 
t9.0 18.6 
15.9 17.2 
43.7 46.1 

114.5' 112.5 
75.1 77.2 

84.9  88.9 
90.5' 86.9 
56.7 54.3 
38.0  38.9 
16.6 13.3 
9.4 10.2 

29.6 35.6 

- 
XI1 - 
88.7 
69.6 
47.1 
40.9 
17.4 
10.7 
11.1 

44.4 
17.1 

46.0 
62.0 
72.4 

53.2 
71.7 

49.1 
25.8 
18.t 
18.6 
49.9 

111.9 
93.9 
79.5 

39.3 
53.3 

10.6 
10.7 
41.0 

77.8 

- 
.verage - 

83.1 
52.2 
5.9 

28.9 
13.5 
9.3 

12.2 
31.9 
47.2 
54.5 

80.2 
64.7 

60.1 
48.5 
36.7 
21.4 
14.2 
35.9 
6b.8 

103.4 
98.5 
86.7 
65.7 
39.7 
27.5 

21.7 
8.8 



TABLE 2 (continued) - 
Year - 
1777 
1778 
1779 
1780 

1782 
1783 
1784 
1785 
1786 

1788 
1787 

1789 
1790 
1791 
1792 

1794 
1793 

1795 
1796 
1797 
1798 
1799 
1800 
1801 
1802 
1803 
1801 
1805 
i808 
1807 

1781 

I 

47.5 
144.8 

103.5 
139.0 

79.4 

30.6 
47.0 

12.3 
13.9 

111.4 
49.6 

140.7 
124.9 
106.0 

62.2 
74.9 

55. 1 
40.7 
30.5 
20.2 
8.8 
4.1 
7.8 

25.2 
7.2 

41.8 

44.3 
42.4 

48.9 
34.2 
18.9 

I1 - 
148.4 
55.1 

137.5 
100.0 
78.0 
14.5 
29.4 
10.8 
15.5 
54.5 

11 5.3 
141.2 
122.5 
103.4 
73.i 

54.0 
61.9 

40.7 
28.7 
19.8 
8.0 
3.8 
7.8 
8.8 

26.6 
42.8 
41.7 
44.0 
49.2 
33.2 
17.6 

I11 I IV 

151.9 
62.9 

133.8 
98.2 
75.4 
42.9 
27.7 
10.0 
16.9 
60.7 

1 19.2 

11 9.9 
140.4 

101.2 
70.8 
62.2 
51.3 
40.7 
28.2 
19.0 
7.7 
3.5 

10.1 
7.5 

28.3 
44.1 
40.8 
44.6 
48.8 
31.7 
1  6.3 

70.3 
156.3 
129.9 
95.5 
71.5 
42.0 
26.4 

9.7 

66.7 
i 9.4 

123.0 
139.1 
11 6.5 

69.4 
99.6 

61.8 
49.3 
39.3 
28.0 
18.8 
7.0 
3.2 

10.9 
7.6 

30.0 
45.1 
41.2 
45.3 
47.1 
30.7 
147 

158.5 
, 125.7 127.0 

156.5 

86.9 913 

78.1 87.6 

22.0 I 9.8 
23.5 

132.8  136.6 

79.3 72.6 , 
129.5 125.9 i 

10.0 

116.0 I 117.9 
97.2 

48.3 

66.9 67.9 
92.5 

22.7  25.8 
40.8  39.6 

60.5 61.3 
47.3 

1i.a 16.6 
6.7 I 6.5 3.2 3.8 
7.3 

11.5 13.2 

43.1 42.5 
47.0 46.1 

33.7 32.1 
45.0 45.1 

6.8 

44.9 43.1 
30.0 28.7 
13.0 11.1 

151.8 
98.0 

124.1 
86.0 
66.2 
37.4 
22.2 

25.4 
9.9 

86.9 
132.2 
129.9 
117.7 
88.6 
66.0 

46.4 
60.0 

40.0 
21.3 
15.7 
5.9 
4.1 

15.3 
7.0 

34.9 
45.1 
42.9 
48.1 
41.3 
27.0 
9.6 

106.6 1 113.6  119.6 128.2' 

119.4 ' 115.7'  112.8: 109.6 106.9 
141.9 151.5 153.2' 152.5' 148.4 
138.6 

,I 83.4 ,I 80.4 i 79.2  79.5 

' I  

86.2 1 62.8 

. ~. ~ 

36.3 
20.3 
9.6 

28.3 

133.3 
93.4 

128.7 
117.3 
84.6 
65.4 

45.5 
59.5 

38.9 
20.6 
14.6 
5.4 
4.4 
7.1 

36.5 
17.0 

45.4 

48.6 
42.6 

39.8 
25.1 
8.7 

60.6 I1 58.8 I, 55.6 1 51.C 

i 
I '  

36.0 '1 35.0 ' 33.2 31.3 
18.3: 16.9: 15.5 14.1 
9.5 9.7 10.5 11.9 

31.6 ~ 36.1 : 42.0 46.3 

136.6 138.0 136.4 137.8 
9 7 5  100.9 104.4 107.9 

' 

116.4  114.2  111.7  109.2 
81,O 79.4  77.8  75.9 
65.1  64.5  64.0  63.4 
58.8  57.6  56.2  55.4 
44.3 82.6 41.7  41.4 
37.6 36:Z 3417  32.7 
20.1 I 20.8 1 20.9 I 20.1 
13.3 9.5 9.9 11.6 

5.1  5.8 

40.7  39.6  38.6  37.7 
24.3 22.8  20.4  18.5 
5.9 5.4 5.9 6.6 
7.3 6.5 

5.7 4.7 5.5 5.9 

45.1 
45.1 43.2 

48.3 47.9 48.2  48.6 

42.8 43.2 43;9 
45.2 45.7 

38.4  37.2 36.3 35.2 
23.0 

7.0 0.0 7.1 8.0 
20.2 21.5 22.3 

92.2 
151.3 
123.4 
89.2 
66.5 
38.7 
22.5 
10.3 
26.7 
81 -2 

128.2 
133.3 
117.0 

67.6 
90.6 

47.3 
59.8 

38.5 
24.0 
15.6 
6.5 

6.9 
4.6 

33.7 
15.0 

44.1 

46.8 
43.0 

425 
27.3 
11.6 



T A B L E  2 (continued) - 
Year - 
1808 
1809 
1810 
18i 1 
1812 
1813 
1814 
1815 
1816 
1817 
1818 
lUl9 
I820 
1821 
1822 
1823 
1824 
1825 
1826 
1827 
1828 
1829 
1830 
1831 
1832 
1833 

LE35 
1 834 

1836 
1837 
1838 

I 
~ .~ 

6.8 
6.7 
0. 1 
0.3 
2.5 
8.1 
15.4 
22.2 
47.3 
43.2 

24.0 
34.2 

21.7 
9.5 
6.3 
0:s 
6.3 
11.1 
24.9 
46.9 
61.2 
63.3 
68.9 
60.2 
39.8 
i2.1 
7.8 
27.5 
99.5 
142.7 
t21.3 

- 
I1 - 
6.1 
6.4 

0.0 
0.6 
2.9 
8.6 
15.2 
24.8 
43.4 
44.5 

23.9 
32.7 

21.2 
7.8 
6.4 
0.2 
6.3 

26.3 
14.0 

47.1 
62.6 
64.9 
65.8 
60.4 
36.6 
11.7 
7.8 
3t  .9 
i03.9 
145.8 
it6.7 

- 
111 - 
6.5 
5.3 
0.0 
0.7 
3.7 
8.7 
14.6 
27.6 
46.1 
45.0 
31.7 
23.2 
20.8 
6.9 
6.1 
0.1 
7.2 

21.1 
14.8 

49.0 
63.6 
65.1 
65.1 

33.4 
59.6 

11.7 
7.7 
37.9 
105.7 
146.9 
i13.5 

- 
IV 

6.6 
4.0 
0.0 

3.7 
1 .o 
10.1 

29.2 
14.0 

47.7 
43.2 
31.5 
22.5 
19.6 

5.1 
7.3 

0.1 
9.1 

28.7 
14.2 

50.5 
63.5 
65.3 
66.6 
57.0 
31.1 
11.3 
8.4 
44.6 
1073 
! 46.4 
111.2 

- 
V - 
6.8 
4.0 
0.0 

3.9 
1.3 

11.5 

30.7 
13.5 

48.1 
41.6 

23.0 
31 .O 

f 8.1 
7.5 
4.2 

10.2 
0.1 

14.3 
3i.3 
51.2 

65.8 
63.8 

68.3 
53.8 
28.9 
10.3 

50.4 
10.2 

109.9 
145.2 
108.6 

- 
VI - 
7.6 
3.0 
0.0 
1.4 

12.0 
4.6 

13.7 
33.5 

41.1 
47.3 

23.7 
30.2 

16.5 
7.0 
4.0 
0.9 

i 5.7 
9.4 

34.4 
50.6 
64.2 
66.7 
69.9 
50.0 
27.6 
9.3 

55.1 
12.2 

116.1 
14!.5 
105.2 

- 
VI1 

8.4 
2.2 
0.0 

4.5 
1.9 

13.1 
13.8 
35.7 
46.2 
41 .O 
30.0 
23.4 
t5.8 
5.7 
40 
2.7 
7.9 

37.0 
17.1 

50.5 
63.8 
67.4 
70.8 
47.1 
26.1 
8.3 

60.2 
13.4 

125.6 
136.5 
101.6 

8.9 

0.0 
1.6 

2.4 

14.1 
4.4 

14.5 
37.5 
46.2 
39.5 
29.8 
23.1 
i4.9 

4.0 
4.7 

4.0 

17.7 
1.4 

38.9 
51.9 
62.8 

69.7 
68.7 

24.2 
46.7 

8.1 

67.1 
13.7 

132.6 
130.9 
100.8 

1x I x 

9.2 

17.4  16.2 
14.8  14.3 
5.5  4.8 
2.6  2.5 
0.0 0.0 
1.0 1.1 
8.8 

46.7  46.3 
41.0  44.1 

35.0 32.4 
28.8 27.3 
23.4  23.4 
14.1 i3.1 
5.0 5.6 
3.3 2.1 
4.5 5.3 
8.5 8.8 
18.4 19.9 
41.0  42.8 
52.9  53.9 
62.4  64.1 
70.2 71.2 
69.1 67.3 
45.3 42.5 
20.7  17.9 
7.9  7.5 

73.8  80.5 
14.7  17.8 

136.8 138.2 
127.4  127.2 
98.9 93.6 

- 
X I  

7.9 
0.8 
0.0 
2.6 

15.1 
6.4 

17.9 
46.7 
44.0 
34.1 
25.3 
23.7 
12.1 
5.1 
1.4 
6.2 

21.4 
8.6 

44.7 
55.9 
64.7 
71.7 
63.9 
41.5 
15.7 
7.3 
21.8 
86.7 
138.0 
127.8 
01.4 

- 
XI1 

0.4 
7.2 

0.0 
2.7 

15.3 
7 .O 

19.8 
47.6 
42.8 
35.2 
23.9 
23.1 
10.6 
5.9 
1.2 
6.3 

23.0 
9.8 

46.5 
59.0 
62.8 

61.4 
71.3 

41.4 
13.5 
7.4 
24.3 
03.3 
139.4 
126.2 
82.2 

- 
bverage - 
7.6 
3.1 
0.0 
1.7 
4.5 
12.1 

35.1 
15.5 

46.1 
39.6 
20.7 
23.4 
16.8 
6.6 
4.0 
2.6 

16.9 
8.3 

35.3 
51.6 
63.3 
67.6 
67.2 
50.5 
26.3 

13.3 
0.4 

121.1 
59.1 

103.4 
137.0 



T A B L E 2 (continued) - 
Year - 
1839 
1 a40 

1842 
M4! 

1844 
1843 

1845 
1846 
1847 
1848 
1849 
1850 
1851 
1852 
i853 
1854 
1855 
1856 
1857 
1858 
1859 
1860 
1861 
1862 
1863 
1864 

1866 
1865 

1867 iw 
1889 

I - 
79.6 
80.7 

26.6 
18.1 

29.9 
11.9 

49.0 

128.3 
66.0 

116.5 
75.6 
66.6 
59.5 
44.3 
28.2 
14.2 

10.5 
3.3 

38.6 
78.9 

88.1 
97.2 

51.9 
67.7 

44.8 
39.1 
22.8 

19.3 
5.9 

01.4 

4.9.7 

80.8 

162 17.4 
24.1  25.4 
44.3  46.7 
71.1  76.6 
85.4 

30.7 31.9 
12.9 13.5 

50.6  54.8 
69.8  75.6 

131.6  128.7 
f 10.9  107.7 
74.0  73.7 
66.3  65.4 
59.0  57.0 
45.0 

11.4 123 
23.7 25.6 
45.2 

3.6 3.9 

41.7  44.8 
11.7 13.7 

82.6  85.9 
97.9  97.0 

66.7 65.3 
49.6 47.f 
46.0  46.6 
37.2 36.2 
21.0 t9.4 
5.4 

21.5 242 
5.2 

64.6 68.0 

85.8 84.5 

IV 

87.9 

41.8 
66.9 

23.8 
14.2 
14.3 
33.7 

83.1 
58.6 

124.2 
104.9 

64.2 
73.4 

55.9 
44.0 
22.0 
10.4 
3.9 

48.5 
16.8 

87.9 
95.4 
83.1 

45.2 
63.7 

46.6 
35.2 
18.7 

27.6 
5.3 

69.4 

V 

87.5 
646 

25.1 
39.5 

i 4.6 
12.0 

35.7 

91.5 
60.1 

121.1 
101.7 
71.5 
63.7 
56.2 
41.9 
20.8 
9.2 

51 -5 
19.3 

90.8 

80.3 
94.4 

44.5 
62.5 

47.2 
332 
17.9 

31.7 
5.3 

70.1 

3.8 

VI 

86.5 
63.6 
37.4 
25.1 

14.6 
10.9 

61.3 
38.5 

1  22.2 
96.6 

98.5 
GR.1 
64.0 
55.3 
39.9 
20.7 
7.5 
4.1 

21.5 
53.6 
93.2 
95.1 
77.8 
60.8 
44.0 
47.5 
31.1 
16.8 

35.5 
6.3 

72.4 

I 
i5.7 
40.6 

102.5 
62.2 

124.2 

66.4 
92.6 

64.2 
53.1 

20.4 
38.0 

6.2 
4.9 

23.8 
56.7 
93.7 
94.9 
77.2 
58.5 
44.4 
46.6 
29.8 
15.0 
7.9 

39.2 
74.6 

41.5 
63.2 

109.3 
124.9 
87.5 
67.0 
62.3 
50.9 
35.9 
20.0 
5.4 
5.5 

60.7 
26.0 

93.7 
93.7 
76.7 

44.4 
57.6 

45.9 
29.0 
12.1 

42.9 
9.2 

77.6 

42.f  

11 3.C 
63.: 

125.3 
85.1 
66.9 
60.6 

34.3 
48.9 

19.5 
4.5 
5.8 

29.4 
64.3 
94.0 
93.3 
73.7 
58.2 
44.0 
44.4 
2U.4 
9.9 

10.5 
45.8 
84.3 

34.5 32.1 28.9 38.5 
50.5  49.4  49.7  '61.9 

20.2 19.3 18.7 23.0 
12.2 12.3 11.7 13.2 
22.7 25.7 28.4 47.7 
44.0 I 45.0 I 46.9 I 38.4 

116.6 
63.8 

124.6 

66.7 
82.2 

60.8 

120.3 
63.4 

123.5 I 

672 
79.0 

"9 

64.9 
123.0 
120.8 

67.0 
77.7 

59.9 
4i;z 45;s 44:5 
32.7 31.3 30.1 
18.4 16.9 15.6 
3.8 3.6 3.2 

32.7 34.3 36.0 
6.2 7.6  9.3 

67.6 71.7  75.5 
93.8 93.9  95.4 
94.5 93.6 

43.2  43.0  43.8 
55.4 57.6 58.6 
68.1  67.9 69.5 
90.6 

59.7 

125.0 
97.3 

69.8 
95.4 

63.2 
52.8 
"" 

38.6 
21 .o 
7.7 
5.2 

23.0 

90.3 
56.3 

77.7 
94.8 

61.1 
45.4 



T A B L E  2 (continued) - 
Year - 
1870 
1871 
1872 
1873 
1874 
1875 
1876 
1877 
1878 
1879 

1881 
1880 

1882 
1883 
1884 
1885 

1887 
1886 

1888 
1  889 
1890 
i891 
1892 
1893 
1894 
1895 
1896 
1897 

1899 
1898 

1900 

I - 
110.0 
132.3 
98.9 
87.8 
51.8 
29.8 
11.7 
13.1 
6.6 

17.7 
2.5 

60.4 
47.0 

57.3 
72.4 
57.t 
37.2 
13.1 
10.3 
5.6 

20.5 
5.5 

58.4 
78.0 
87.9 
67.7 
51.5 
32.9 
26.0 
20.4 
10.7 

I1 - 
116.2 
129.3 
98.3 
85.2 
51.5 
25.5 
11.6 
12.6 
6.0 
3.2 

49.7 
19.8 

58.4 
59.0 
71.7 
57.4 
34.3 
13.0 
8.6 
6.6 

23.5 
5.0 

62.0 
79.7 
86.2 
65.2 
49.6 
32.0 
25.6 
19.4 
10.5 

I11 

121.6 
125.1 
99.0 
81.4 
50.4 
22.5 
11.7 
12.7 
5.3 

23.9 
3.7 

49.6 
57.9 
59.0 
72.4 
56.2 
32.2 
12.6 
7.9 
7.2 
5.0 

26.0 
65.2 
81.5 
83.2 
64.8 
48.0 
31.2 
25.4 
17.1 
10.6 

IV - 
127.5 
120.4 
101.0 
76.2 
49.1 
20.5 
12.0 
12.7 
4.6 
4.2 

27.6 
49.9 
57.8 
59.8 
71.3 
54.9 
30.2 
11.9 
7.8 
7.1 

29.2 
5.8 

66.4 
82.5 
82.5 
64.2 
46.5 
30.1 
25.7 
15.1 
10.6 

V - 
134.0 

101.9 
116.3 

71.5 
47.4 
19.2 
11.8 
12.6 
4.0 
5.0 

29.7 
51.8 
58.9 
60.9 
67.8 
54.4 
27.5 
12.1 
7.8 
6.7 

32.2 
6.6 

68.1 

81.6 
83.3 

63.5 
44.5 
28.3 
27.5 
13.2 
10.4 

VI 

138.0 
112.9 
101.9 
67.7 
45.5 
17.9 
11.4 
12.5 
3.5 

31.3 
5.7 

53.5 
59.9 
62.3 
64.6 
53.2 
25.8 
12.7 
7.3 
6.3 
7.0 

34.6 

84.3 
71.0 

79.4 
63.5 
43.0 
26.6 
27.6 
12.2 
9.9 

VI1 - 
139.6 
110.11 
102.0 
65.2 
42.7 
17.1 
1 1.7 
11.4 
3.3 
6.9 

32.8 
5/15 
60.3 
65.0 
61.4 
51.6 
24.6 
13.2 
6.3 
6.5 

37.9 
7.4 

73.2 
85.3 
77.2 
62.5 
42.3 
25.8 
26.3 
11.7 
9.1 

- 
VI11 - 
140.5 
110.3 
101.7 
62.4 
39.1 
16.8 
11.9 
10.4 
3.9 
9.0 

34.4 
55.6 
60.0 
67.9 
58.8 
49.2 
23.2 
13.0 
5.8 
6.3 
8.6 

42.5 
73.4 
86.1 
75.6 
60.7 
41.6 
25.7 
24.7 
11.5 
8.2 

IX - 
140.2 
107.8 
101.6 
58.4 
36.8 
16.3 
10.8 
10.1 

10.9 
2.4 

36.8 
57.0 
58.t 
71.4 
56.6 
47.6 
20.5 
12.5 
5.E 
5.2 

46.: 
9.f 

73.1 
86.( 
75.: 

39.. 
26.: 
22.: 
11.: 
7.t 

59; 

X - 
39.6 
03.0 
00.9 
54.4 
36.1 
15.1 
10.6 

2.3 
9.3 

39.5 
12.3 

59.5 
56.5 

54.2 
73.0 

47.4 
16.7 
13.0 
5.8 
5.7 

1 0.8 
50.0 
75.3 
85.2 
75.4 
58.2 
38.0 
26.0 
21.9 
10.9 
6.8 

XI - 
,38.5 
98.9 
97.4 
52.4 
34.6 
13.7 
11.8 
8.0 

13.7 
2.4 

41.6 
62.2 
54.6 
74.2 
53.6 
45.2 
14.7 
12.4 
5.6 
5.7 

13.1 
53.7 
76.3 
85.6 

55.1 
37.1 
25.6 
21.1 
11.3 
6.8 

73.8 

XI1 - 
135.4 
98.0 
92.2 
52.0 
32.7 
12.5 
13.0 
7.1 

15.8 
2.2 

43.6 
62.4 
54.5 
74.6 
55.2 
41  ,1 
13.8 
11.5 
5.3 
5.6 

16.5 
56.5 
77.c 

71.3 
86.7 

35.2 
52: 

26.: 
20.: 
11.: 
5.4 

- 
verage - 
131.8 
11 3.8 
99.7 
67.9 
43.1 
18.9 
i1.1 
11.0 
3.9 

31.6 
7.7 

54.4 
58.t 
65.4 
63.3 
51.3 
25.1 
12.6 
7.0 
6.3 
8.4 

37.7 

83.7 
70.0 

79.1 
61.5 
43.1 
28.1 
24.6 
13.8 
8.8 



T A B L E  2 (continued) - 
Year - 
1901 
1902 
1 903 
1  904 
1905 
1906 

1908 
1907 

1909 
1910 
191 1 
1912 
1913 
1914 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 

1924 
1  923 

1926 
1  925 

1928 
1927 

1929 
1930 

I 

4.8 
2.6 

35.5 
12.3 

52.5 
63.4 
56.9 
50.5 
49.4 
31.5 
12.0 
3.2 
2.6 
4.6 

29.4 
57.8 
73.4 
95.5 
78.6 

3 1.0 
46.8 

20.1 
6.4 
9.8 

25.9 
62.6 
72.0 
721 
66.2 
53.6 

4.4 
2.7 

37.7 
14.6 

53.5 
64.2 
55.0 
51.6 
46.4 
30.1 
11.2 
3.0 

5.1 
2.5 

34.8 
55.6 
81.2 
92.8 
75.2 
43.2 
31.7 
18.i 
5.9 

27.1 
11.6 

64.1 
71.8 
75.t 
643 
49.8 

3.9 

15.8 
3.1 

39.7 
54.6 
63.8 
56.4 
53.2 
41.6 
29.1 
10.0 
3.1 
2.2 
5.8 

38.9 
54.0 
89.7 
88.5 
72.8 

31.1 
40.3 

16.9 
6.0 

12.9 
29.3 
65.1 
71.7 
77.3 
61.3 
48.0 

3.2 
3.9 

41.1 
16.9 

56.6 
61 .3 
59.6 
51.9 
40.7 
27.7 
7.6 
3.4 

6.5 
1.8 

42.3 
53.7 
04.1 
87.0 
70.4 

29.0 
39.4 

15.8 

14.0 
6.6 

32.6 
65.2 
71.7 
78.1 
58.6 
47.1 

- 
V 

2.8 

10.3 
4.7 

60.5 
41.5 

55.9 
62.6 
49.9 
42.2 
24.7 
6.0 
3.4 

7.4 
1.7 

45.3 
54.6 
96.3 
87.0 
67.4 
38.7 
27.3 
14.9 

1 5.1 
6.9 

35.9 
65.4 
71.6 
17.3 
59.6 
44.2 

7 

V I  

2.8 

22.5 
5.0 

41.6 
63.4 
53.5 
62.8 
48.9 
43.3 
20.6 
5.9 
3.4 
1  .6 
8.8 

46.9 
56.3 

100.7 
83.5 
6  .6 

26.5 
37.9 

14.4 

16.1 
6.4 

40.9 
64.7 
70.5 

63.0 
77.2 

39.0 

- 
VI1 

3.0 

25.4 
5.2 

42.9 
63.1 
55.1 
60.5 
49.3 
42.6 
17.6 
5.6 
3.7 
1.5 

48.3 
10.4 

58.3 
104.8 

63.7 
78.6 

36.8 
25.3 
13.9 

16.9 
5.6 

47.2 
64.3 
69.1 
77.1 
64.8 
33.5 

- 
VI11 

3.t 

26.6 
6.0 

46.4 
60.4 
59.6 
55.9 
50.5 
40.7 
15.7 
5.1 
3.9 
1 .5 

49.8 
12.9 

60.2 
i05.4 

62.8 
77.2 

34.9 
24.4 
1  2.6 

17.9 
5.6 

51.8 
65.7 
68.4 
76.1 
64.0 
31.2 

3.3 

33.5 31.4 29.6 27.9 
51.3  50.7  50.5 49.8 

10.6  9.5  7.9 6.8 
2.8  3.3  3.6 

58.5 59.5  60.6  61.6 
62.7  62.4 

12.8  13.8 14.0 142 
32.8  33.8 35.4 38.2 
50.6  51.9  53.1  52.6 
50.6 50.4  50.3 51.4 
60.1 61.7 

4.6  4.0 3.3  3.2 
3.8 3.5 3.2  2.8 

16.1 18.6 20.7 24.3 
1.6  2.4 4.0  3.3 

51.5  53.9 56.9  58.6 
62.1 63.3 65.1  68.7 

104.2  103.5 102.2 98.3 

61.9 60.5 56.7  51.4 
77.5 76.1 75.4  78.0 

25.5  25.8  24.3  22.5 
32.1 31.0  31.3 30.6 

9.4  7.1  6.7 6.6 

19.3  20.9 228 24.5 
5.7 5.8 6.8 8.1 

55.6 57.7 58.9 60.9 
66.9 695 72.4 72.4 
68.3  68.4 67.7 69.0 
742 71.6 692 67.7 
62.8  61.1 60.6 57.5 
30.7 30.2 29.4  28.3 

- 
Lvcrage - 

3.4 

23.0 
5.7 

4441 
50.7 
60.3 
56.0 
51.2 
40.6 
21.0 
6.5 
3.4 

11.8 
2.2 

46.4 
59.1 
96.2 
83.1 
65.5 
36.9 
27.0 
13.0 

16.8 
6.3 

43.7 
665 
70.0 
74.5 
62.0 
30.8 



T A B L E  2 (conrinued) - 
Year - 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 
1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1053 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
- 

I - 
27.6 
14.8 
8.4 
5.7 

59.0 
17.6 

107.6 
109.3 
101.1 
74.2 
56.6 
43.7 
2 0 .  1 
8.2 

21.9 
60.6 

131.7 
144.8 
136.6 
115.0 
71.7 
43.2 
24.1 
6.4 

88.8 
14.2 

170.2 
199.0 
178.6 
128.9 

- 
XI - 
26.9 
14.2 
7.9 

19.6 
6.3 

113.5 
62.2 

109.2 
96.9 
73.0 
54.7 
41  .1 
19.9 

23.8 
7.7 

136.8 
67.0 

142.8 
134.5 
111.9 
69.5 
42.0 
2i.6 
5.6 

16.4 
98.5 

172.2 
200.9 
176.9 
125.0 

I11 - 
25.9 
13.3 
7.7 
6.6 

22.0 
65.9 

116.7 
107.9 
97.4 
71.1 
52.8 
36.5 
19.6 
7.8 

25.1 
72.9 

140.5 
143.4 

133.2 
106.4 
69.8 
39.5 
19.9 
4.2 

109.3 
19.5 

1  74.3 
201.3 
174.5 
121.6 

24.2 
1  2.6 
7.5 
6.7 

25.6 
68.8 

1 19.2 
106.3 
97.9 
67.8 
52.4 
33.3 
18.8 

28.1 
8.4 

76.8 
149.0 
138.2 
133.0 
99.5 
70.7 
36.0 
18.9 
3.4 

23.4 
118.7 
181.0 
196.8 
169.2 
119.6 

- 
V - 
22.6 
12.2 
6.9 

29.9 
7.2 

72.5 
1 19.0 
107.1 

66.0 
95.2 

51.2 
31.8 
17.5 
8.8 

31.7 

151.8 
81.4 

135.8 
134.8 
92.9 
70.2 
33.6 
17.4 
3.7 

28.8 
127.4 
185.5 
191.4 
165.1 
117.0 
- 

- 
VI - 
21.6 
11.4 
6.2 

34.2 
8.1 

115.8 
77.2 

109.4 

66.7 
90.9 

49.0 
31.0 
16.5 
9.2 

33.1 

151.7 
88.6 

135.3 
136.0 
86.6 
69.8 
31.9 
15.2 
4.2 

35.  1 
136.9 
187.9 
186.8 

113.9 
161.4 

- 
VI1 

21.1 
11.2 
5.4 
9.4 

37.9 
82.6 

1 1  3.0 
108.8 
87.6 
67.6 
47.0 
29.6 
16.0 

34.3 
10.2 

95.3 
151.2 
136.6 
134.4 
82.2 
68.6 
30.8 
12.8 
5.4 

40. 1 
145.5 
191.4 
185.2 
155.8 
108.4 

- 
VI11 - 

19.7 
11.7 
4.3 

42.0 
10.6 

111.2 
87.8 

106.3 

66.8 
85.5 

47.0 
27.7 
14.4 
11.3 
38.6 

100.2 
148.9 
141.1 
130.0 
79.0 
66.3 
29.4 
11.6 
7.2 

46.5 
149.6 
194.4 
184.9 
151.3 
101.9 

17.8 
12.0 
3.4 

46.5 
11.9 

90.3 
110.9 
103.6 
85.5 
64.6 
47.6 
25.6 
12.6 
12.3 

104.3 
43.9 

145.5 
147.7 
124.4 
75.3 
63.3 
28.2 
11.4 

55.5 
154.5 
197.3 

146.3 
1 83.8 

97.2 

7.8 

- 
X - 
16.3 
11.7 

12.7 
3.6 

5i.3 

110.6 
92.1 

103.0 
84.3 
61.9 
4R.t 
23.0 
10.8 
14.0 
48.1 

!09.6 
145.7 
148.5 

72.2 
59.2 
27.6 
10.4 

64.4 
7.5 

155.2 
199.: 
182.; 
141.1 
92.t 

121.a 

- 
14.8 
10.7 

13.0 
4.6 

55.0 
96.1 

110.8 
103.0 
79.6 
59.7 
50.2 
21.1 

16.5 
9.2 

117.6 
52.  1 

t46.2 
143.9 
119.6 
71.4 
53.0 
27.1 
8.8 
9.5 

73.0 

200.8 
159.6 

180.7 
137.2 
87.2 

- 
XI1 
7 

14.8 
9.4 
5.4 

57.2 
15.0 

101.2 
109.8 
102.8 
76.3 
57.6 
47.8 
20.5 

10.0 
8.6 

56.0 
126.2 
145.3 
139.2 
118.0 
72.2 
46.8 
26.0 
7.4 

12.0 

164.3 
81 .a 

200.1 
180.5 
132.5 
82.9 

- 
rerage - 
21.1 
12.1 
5.9 

36.6 
9.4 

1 i3.2 
79.6 

106.4 
89.8 
66.4 
50.5 
30.4 
1  5.3 

36.4 
11.1 

145.6 
91.7 

141.2 
129.6 
88.7 
64.9 
33.0 
15.0 
6.4 

41.5 
133.8 
187.9 
189.5 
157.5 
108.0 



T A B L E  3 

Quarterly Wolf numbers 
-. 

Year 

1749 
1750 
1751 
1752 
1153 

1755 
1754 

1756 
1757 
1758 
1759 
1760 
i761 
1762 
1763 
1764 
1765 
1766 
1 767 
1768 
1769 

1771 
1770 

1772 
1173 
I774 
1775 
1776 
1777 
1778 
1779 
1780 
1781 
1782 
1783 
1784 
1785 

1787 
1786 

1788 
1789 
1790 
1791 
1792 
1793 

1795 
1794 

1796 
1797 
1798 

is00 
1799 

1801 
1802 

I 

63.5 

52.9 
79.5 

52.0 
40.6 

9.4 
1.6 

8.3 
20.5 
46.2 
46.4 

80.6 
67.2 

54.1 
40.7 
532  
25.0 

33.5 
19.9 

55.3 
67.5 

108.9 
43.0 
74.3 

56.0 
43.9 

5.3 

402 
13.2 

1402 
132.6 
88.7 
75.5 
42.8 
31.1 
10.7 
7.8 

109.4 
442 

119.8 
136.8 

108.9 
69.6 
61.7 
55.5 

24.6 
42.7 

20.5 
7.5 
6.1 

12.0 
10.0 

45.2 
28.7 

74.1 
92.6 
55.5 
525 

2 0 . 4  
351 

1 1.6 
2.1 

271 
546 
48.7 

92.7 
59.: 

33.8 
59.1 

36.2 
20.7 
1 1.9 

65.9 

68.1 
68.2 

112.4 
62.4 
34.1 
40.9 

9.1 

622 
17.3 

18L2 
132.9 
96.7 
90.2 
44.8 

20.9 
8.7 

120.4 
78.9 

125.6 
122.3 
92.7 
71.7 
66.2 
52.i 
41.9 
222  
19.8 
7.5 
0.4 
9. I 
9.6 

31.4 
44.0 

32.a 

28.8 

- " 

I11 
- 

79.0 
93.2 
49.9 
48.3 
29.7 
13.1 
9.9 
7.3 

38.7 
48.4 
66.5 
67.6 
95.3 
56.7 
49.6 
29.4 
24.2 
3.9 

35.1 
64.7 

129.2 
113.5 
75.9 
61.3 
23.2 
10.7 

13.7 
4.0 

107.7 
154.9 
122.0 
88.5 
63.5 
38.3 
23.4 

29.4 
8.7 

94.7 
140.8 

110.7 
139.5 

77.9 
60.2 

37.8 
54.9 

30.7 
17.4 
15.6 
5.3 
1.8 

17.3 
0.7 

35.7 
49.9 

N 

106.4 
68.1 
31.9 
41.4 
17.2 
13.8 
16.8 
13.6 
43.6 
41.2 
54.3 
57.1 
728  
74.8 
56.2 
26.6 
13.7 
10.0 
50.7 

139.5 
93.4 

11 2.7 

67.7 
95.1 

36.8 
14.6 
9.5 

35.0 
136.6 
137.2 
116.0 
65.2 
43.2 
28.2 
1 1 2  
13.0 

113.7 
157.5 
122.1 
119.7 

64.9 
80.1 

45.6 
57.3 

20.8 
49.1 

8.2 
5 2  
8.0 
5.3 

"2 
20.0 

41.0 

382 

- 
Year 

1803 
1804 
1805 
1806 

1808 
1807 

1809 

1811 
9810 

1812 
1813 

1815 
1814 

1816 
1817 
1818 
1819 

1821 
1820 

1823 
1822 

1824 
1825 
1826 
1827 
1 828 
1829 
i 830 
1831 

1833 
I832 

1834 
1835 
1836 
1837 
1838 
1839 
1840 
1841 
1842 
1843 
1844 
1845 

1847 
1846 

1848 
i 849 

1851 
1850 

I853 
1852 

1854 
1855 
1856 

I 

43.4 
47.2 
522  
33.8 
11.3 

5.8 
1.5 

0.0 
0.0 
4.6 
4.1 

25.9 
13.3 

56.3 
63.5 
29.0 
19.0 

10.5 
16.8 

5.7 
0.2 

14.3 
10.8 

46.6 
10.9 

60.7 
54.9 
69.6 
63.7 
472  
12.7 

17.2 
9.0 

98.1 
166.1 
123.5 
95.9 

27.9 
74.8 

21.4 
8.4 

12.6 
37.5 
59.2 
6 4 4  

126.6 
128.3 
83.3 
81.8 
65.7 
40.6 
18.7 
13.7 
1.9 

I1 

35.1 

39s 
39.5 

26.6 
15.3 
13.1 
4.1 
0.0 
0.a 
0.8 

14.8 
11.1 

32.4 
48.9 
29.2 
41.3 
24.9 
19.8 
4.2 
6.9 
0.0 

11.5 
7.4 

53.0 
31.2 

82.7 

79.5 
78.8 

42.0 
31.6 

6.0 
5.6 

126.3 
46.t 

135.8 
119.6 
56.7 
612 
55.2 
241 
23.5 

45.3 
12.2 

64.7 
68.5 

1ii.o 
88.1 

60.8 
58.6 

40.8 
55.7 

23.8 
6.3 
3.8 

I11 

42.6 
42.0 
41.6 
26.8 
10.1 

0.3 
8.8 

0.0 
3.0 
7.1 

14.0 
9.6 

38.1 
36.6 
43.9 
28.5 
24.1 
17.2 
3.9 
3.3 
0.2 
7.3 

24.0 

48.7 
37.0 

60.4 
74.0 
52.2 
46.0 
10.3 
8.1 

73.2 
8.1 

131.0 
106.5 

86.9 
1162 

35.1 
64.2 

19.2 

17.3 
8.5 

30.8 
69.5 

118.0 
124.0 

77.7 
62.3 
53.8 

43.3 
39.7 

19.0 

5.0 
1.2 

N 

61.1 
52.1 

362 
25.3 

9.2 
3.5 

0.0 
0.0 
2.7 
7.3 

19.6 

452 
18.0 

41.5 
27.6 
22.8 
27.7 

7.7 
8.9 

0.1 
6.8 

18.4 
8.7 

52.7 
50.5 
482 
60.4 
82.6 

21.0 
38.5 

7.8 
29.9 
90.9 

154.8 
1202 
82.7 
74.4 
52.6 
291) 
321 
j2A 

46.6 
17.9 

ViXO 
60.6 

135.8 
89.4 
61.9 
61.6 
55.7 

20.8 
31.8 

5.7 
6.5 
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T A B L E 3 (continued) 

Year 

1857 
1858 
1659 
1860 
1861 

1863 
1862 

1864 
1865 
1866 
1867 
1868 
1869 
1870 
187 1 
1872 
1873 
1874 
1875 

1877 
1876 

1879 
1878 

1880 
1881 

1883 
1882 

1885 
1884 

1886 
1887 
1888 
1889 
1890 
1891 
1892 
1893 
1894 
1895 
1896 
1897 
1898 
1899 
19M) 
1901 
1902 
1903 
1904 
1905 
1906 
1 907 
1908 
1909 
- 

43.1 
8.1 

87.: 
89.1 
80.1 
57.' 
57.' 
57.( 
42.1 
31.: 

19.: 
3.: 

1 1 7 ~  
11 8.1 

97.: 
96S 

57.1 
23.5 
20.1 
12.: 
5.7 

23.7 
0.5 

60.6 
50.1 

54.8 
88.4 

37.7 
9.2 
9.2 
5.4 

15.4 
3.7 

64.9 
71.2 
73.4 
63.8 
46.1 
33.0 
35.0 
15.6 
10.5 

5.9 
2.4 

31.1 
12.9 

65.7 

81.8 
47.1 

56.5 
33.9 

574 

47.a 

- 

18.f 
41.1 
87.C 
95.; 

67.4 
81.( 

44. i 
321 
15.i 
3.2 

31.5 

157.2 
84.5 

133.1 
106.5 
56.3 

21.5 
38.3 

3.0 

4.1 

25.6 
4.5 

51.9 

63.6 
68.4 

64.6 
70.6 
33.8 

6.4 
9.0 

4 4  
2.6 

36.6 
75.2 
87.0 
93.9 

40.2 
72.0 

20.8 
20.9 
14.1 
1 4 4  
5.3 

19.0 
1.4 

41.5 
45.4 
58.7 
45.3 

30.3 
48.8 

45.: 

16.8 

- 
111 
- 

27.; 

102.6 
64.C 

103.1 
80.1 
67.5 
34.3 

38.7 

6.6 
35.6 
73.1 

140.7 
97.8 

104.3 
60.9 
52.7 
9.8 

11.3 
9.5 
1.8 

45.3 
8.1 

62.7 
47.8 
59.7 
56.9 
52.0 
22.9 
17.4 
4.9 

12.3 
12.4 
48.6 
80.3 
98.6 
80.7 

44.5 
58.1 

25.1 
32.5 

8.3 
7.0 
0.8 

22.6 
3.6 

46.3 
62.3 

63.0 
69.0 

72.3 
32.6 

46.a 

9.8 

- 
IV - 
36.4 
70.0 
97.6 
94.5 
67.1 
47.8 

40.0 
39.6 

18.2 

16.0 
8.2 

62.8 

141.3 
80.4 

94.9 

50.7 
99.8 

30.8 
13.4 
10.8 
7.8 
1.9 

10.8 
34.4 
55.4 
61.8 
81.4 
43.9 
31.6 
7.1 

11.4 
6.5 
3.0 

41.9 
9.5 

82.9 
71.5 

64.0 
6  1 :9 
36.3 

26.0 
18.7 

10.4 
5.9 

- 

1 

1 
f 

1 

1 
1 

1 
1 
1 
1 
1 
1 
1 

1 
1 

1 

1 
1 

1 
2.5 1 

43.0 1 
9.2 1 

48.9 
' 
.i 

90.5 1: 
405 1, 
58.1 
39.1 1961 
56.1 

~ 

- 
Yea 

1911 

191: 
191 

191: 

191! 

191, 

191c 
1911 

1921 
192( 

1922 
192; 

1925 
1924 

192G 
1927 

1929 
1930 
I931 
I932 
1933 
I934 
I935 
1.936 
I937 
! 938 
1939 
940 
94 1 
942 
943 
944 
945 
946 
947 
948 

950 
949 

951 
952 
953 
954 
955 
956 
957 
958 
959 
960 

1912 

191! 

1928 

I 

26. 
6. 
1. 
1. 

34. 
2. 

55. 

77.1 
80.. 

64.' 

28.1 
58.1 

31.( 

2.: 
3.: 

151 
68.1 
81.1 
80.f 
61.1 
49.E 
29.i 
11.3 
14.9 

20.E 
5.2 

71.4 

101.4 
74.1 

45.5 
64.4 

47.5 
22.9 
5.1 

70.1 
17.6 

i26.3 
96.5 

02.0 
53.0 

55.2 
28.5 
13.5 
3.9 

16.3 
05.3 

89.4 
50.9 

82.1 
18.2 
52.3 

115.a 

- 

I - 
4 
7 

9 
7 

8 
7 
9 
5 
8 
7 
4 
3 
1 
1 
3 
j 
L 
i 
1 
1 
1 
! 
I 
I 
! 
I 

1 1  
1 
f 

1 
1 
1 
1 
I 

1 
1 
1 
I 
1 

~ 

II 
- 

14.: 
9.: 
4.: 

11.: 
0.: 

47.' 

101.: 
71.: 

72.: 
83.: 
293 
29.4 
8.: 

18.5 
6.1 

58.E 
40.7 

77.2 
83.C 

34.6 
23.7 
d7.1 

3.8 
12.6 
28.4 

118.8 
66.5 

108.6 
109.5 
66.3 

32.4 
40.7 

15.9 

32.9 
2.6 

78.0 
71.7 
77.2 
25.0 
01.1 
00.7 
29.6 
20.7 

24.0 
0.9 

21.3 

80.9 
80.2 

68.0 
17.3 
63.3 

61 .a 

1 - 
3 
2 
3 
3 
3 
7 
3 
2 
1 
1 
3 
L 
I 
I 
I 
I 

I 
! 
I 
I 

j 
f 
1 
1 

1 

1 
1 

1 
1 

~ 

IT1 

17. 
3. 
4. 
1. 
8. 

44. 
63: 

134. 
96: 

27.' 
62.c 

27.1 

5.' 
7.# 

45.. 
58.: 

90.: 
59.( 

56.) 
26.: 
16.: 
6.Z 
2.1 
7.2 

35.4 

127.8 
71.E 

123.5 
105.3 

64.3 

143 
18.4 

2.0 
34.5 

105.9 
172.0 
147.8 
131.6 
75.8 
68.5 
40.8 
17.1 

36.7 
4.9 

.57.3 

.93.7 
97.6 

27.7 
64.8 

63.2 

"; 

79.8 

- ! I  - 
3 

3 
8 

0 
6 
6 
6 
6 
4 
8 
7 
5 
6 
7 
2 

2 
J 

! 
3 
3 

I 

! 

I !  
I 
1 1  

I 

I 

L 

1 
I 
1 
1 

2 
1 

I 
1 

~ 

- 
Iy - 
163 

4.0 
3.0 

2.5 
15.6 
43.5 
56.4 
99.3 

432 
75.9 

35.6 
18.8 
10.4 

21.5 
8.1 

75.5 

58.5 
70.5 

81.0 
56.9 

31.9 
15.5 
9.4 
1.3 

59.6 
9.9 

109.3 

104.7 
96.0 

66.1 

39.4 
60.6 

2 4 1  
12.3 

47.4 

36.0 
15.9 

26.7 
30.9 
56.8 
49.9 
26.7 

4.1 
7.9 

74.9 
82.9 
34.7 
73.8 
20.1 
86.0 
36.7 

18.7 
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